Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Khai triển
Tick mark Image
Đồ thị

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\frac{\left(2x-3\right)\left(2x-5\right)}{\left(x+1\right)\left(x-1\right)}
Nhân \frac{2x-3}{x+1} với \frac{2x-5}{x-1} bằng cách nhân tử số với tử số và mẫu số với mẫu số.
\frac{4x^{2}-10x-6x+15}{\left(x+1\right)\left(x-1\right)}
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của 2x-3 với một số hạng của 2x-5.
\frac{4x^{2}-16x+15}{\left(x+1\right)\left(x-1\right)}
Kết hợp -10x và -6x để có được -16x.
\frac{4x^{2}-16x+15}{x^{2}-1^{2}}
Xét \left(x+1\right)\left(x-1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4x^{2}-16x+15}{x^{2}-1}
Tính 1 mũ 2 và ta có 1.
\frac{\left(2x-3\right)\left(2x-5\right)}{\left(x+1\right)\left(x-1\right)}
Nhân \frac{2x-3}{x+1} với \frac{2x-5}{x-1} bằng cách nhân tử số với tử số và mẫu số với mẫu số.
\frac{4x^{2}-10x-6x+15}{\left(x+1\right)\left(x-1\right)}
Áp dụng tính chất phân phối bằng cách nhân mỗi số hạng của 2x-3 với một số hạng của 2x-5.
\frac{4x^{2}-16x+15}{\left(x+1\right)\left(x-1\right)}
Kết hợp -10x và -6x để có được -16x.
\frac{4x^{2}-16x+15}{x^{2}-1^{2}}
Xét \left(x+1\right)\left(x-1\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4x^{2}-16x+15}{x^{2}-1}
Tính 1 mũ 2 và ta có 1.