Lấy vi phân theo k
\frac{24k}{\left(3k^{2}+1\right)^{2}}
Tính giá trị
\frac{12k^{2}}{3k^{2}+1}
Chia sẻ
Đã sao chép vào bảng tạm
\frac{\left(3k^{2}+1\right)\frac{\mathrm{d}}{\mathrm{d}k}(12k^{2})-12k^{2}\frac{\mathrm{d}}{\mathrm{d}k}(3k^{2}+1)}{\left(3k^{2}+1\right)^{2}}
Đối với hai hàm khả vi bất kỳ, đạo hàm của thương hai hàm bằng mẫu số nhân với đạo hàm của tử số trừ đi tử số nhân với đạo hàm của mẫu số, chia tất cả cho bình phương của mẫu số.
\frac{\left(3k^{2}+1\right)\times 2\times 12k^{2-1}-12k^{2}\times 2\times 3k^{2-1}}{\left(3k^{2}+1\right)^{2}}
Đạo hàm của một đa thức là tổng các đạo hàm của các số hạng trong đa thức đó. Đạo hàm của mọi hằng số là 0. Đạo hàm của ax^{n} là nax^{n-1}.
\frac{\left(3k^{2}+1\right)\times 24k^{1}-12k^{2}\times 6k^{1}}{\left(3k^{2}+1\right)^{2}}
Thực hiện tính toán số học.
\frac{3k^{2}\times 24k^{1}+24k^{1}-12k^{2}\times 6k^{1}}{\left(3k^{2}+1\right)^{2}}
Khai triển bằng cách sử dụng tính chất phân phối.
\frac{3\times 24k^{2+1}+24k^{1}-12\times 6k^{2+1}}{\left(3k^{2}+1\right)^{2}}
Để nhân lũy thừa của cùng một cơ số, hãy cộng các số mũ với nhau.
\frac{72k^{3}+24k^{1}-72k^{3}}{\left(3k^{2}+1\right)^{2}}
Thực hiện tính toán số học.
\frac{\left(72-72\right)k^{3}+24k^{1}}{\left(3k^{2}+1\right)^{2}}
Kết hợp giống như các số hạng.
\frac{24k^{1}}{\left(3k^{2}+1\right)^{2}}
Trừ 72 khỏi 72.
\frac{24k}{\left(3k^{2}+1\right)^{2}}
Với mọi số hạng t, t^{1}=t.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}