Phân tích thành thừa số
\frac{\sqrt{2}\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{2}
Tính giá trị
-\frac{2\sqrt{3}ba^{2}c^{5}}{2}+\frac{2\sqrt{5}ab^{2}c^{4}}{2}+\sqrt{2}
Chia sẻ
Đã sao chép vào bảng tạm
factor(\frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc})
Tính căn bậc hai của 4 và được kết quả 2.
factor(\frac{abc\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)}{\sqrt{2}abc})
Phân tích thành thừa số cho biểu thức chưa được phân tích thành thừa số trong \frac{2abc+\sqrt{10}a^{2}b^{3}c^{5}-\sqrt{6}a^{3}b^{2}c^{6}}{\sqrt{2}abc}.
factor(\frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}})
Giản ước abc ở cả tử số và mẫu số.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}})
Hữu tỷ hóa mẫu số của \frac{-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2}{\sqrt{2}} bằng cách nhân tử số và mẫu số với \sqrt{2}.
factor(\frac{\left(-\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2\right)\sqrt{2}}{2})
Bình phương của \sqrt{2} là 2.
factor(\frac{-\sqrt{6}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Sử dụng tính chất phân phối để nhân -\sqrt{6}ba^{2}c^{5}+\sqrt{10}ab^{2}c^{4}+2 với \sqrt{2}.
factor(\frac{-\sqrt{2}\sqrt{3}ba^{2}c^{5}\sqrt{2}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Phân tích thành thừa số 6=2\times 3. Viết lại căn bậc hai của sản phẩm \sqrt{2\times 3} như là tích của gốc vuông \sqrt{2}\sqrt{3}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{10}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Nhân \sqrt{2} với \sqrt{2} để có được 2.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+\sqrt{2}\sqrt{5}ab^{2}c^{4}\sqrt{2}+2\sqrt{2}}{2})
Phân tích thành thừa số 10=2\times 5. Viết lại căn bậc hai của sản phẩm \sqrt{2\times 5} như là tích của gốc vuông \sqrt{2}\sqrt{5}.
factor(\frac{-2ba^{2}c^{5}\sqrt{3}+2ab^{2}c^{4}\sqrt{5}+2\sqrt{2}}{2})
Nhân \sqrt{2} với \sqrt{2} để có được 2.
2\left(-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}\right)
Xét -2ba^{2}c^{5}\times 3^{\frac{1}{2}}+2ab^{2}c^{4}\times 5^{\frac{1}{2}}+2\times 2^{\frac{1}{2}}. Phân tích 2 thành thừa số.
-ba^{2}c^{5}\sqrt{3}+ab^{2}c^{4}\sqrt{5}+\sqrt{2}
Viết lại biểu thức đã được phân tích hết thành thừa số. Rút gọn.
Ví dụ
Phương trình bậc hai
{ x } ^ { 2 } - 4 x - 5 = 0
Lượng giác
4 \sin \theta \cos \theta = 2 \sin \theta
Phương trình tuyến tính
y = 3x + 4
Số học
699 * 533
Ma trận
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Phương trình đồng thời
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Lấy vi phân
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Tích phân
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Giới hạn
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}