Chuyển đến nội dung chính
Tính giá trị
Tick mark Image
Khai triển
Tick mark Image

Các bài toán tương tự từ Tìm kiếm web

Chia sẻ

\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Sử dụng định lý nhị thức \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} để bung rộng \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Sử dụng tính chất phân phối để nhân \frac{1}{2}a-\frac{2}{3}b với \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} và kết hợp các số hạng tương đương.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Xét \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Khai triển \left(\frac{1}{4}a^{2}\right)^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Tính \frac{1}{4} mũ 2 và ta có \frac{1}{16}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Khai triển \left(\frac{4}{9}b^{2}\right)^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Tính \frac{4}{9} mũ 2 và ta có \frac{16}{81}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để tìm số đối của \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, hãy tìm số đối của mỗi số hạng.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Kết hợp \frac{1}{16}a^{4} và -\frac{1}{16}a^{4} để có được 0.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Kết hợp -\frac{16}{81}b^{4} và \frac{16}{81}b^{4} để có được 0.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
Sử dụng tính chất phân phối để nhân -\frac{1}{3}ab với \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
Kết hợp \frac{1}{6}a^{3}b và -\frac{1}{6}a^{3}b để có được 0.
-\frac{1}{3}ab^{3}
Kết hợp -\frac{8}{27}ab^{3} và -\frac{1}{27}ab^{3} để có được -\frac{1}{3}ab^{3}.
\left(\frac{1}{2}a-\frac{2}{3}b\right)\left(\frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3}\right)-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Sử dụng định lý nhị thức \left(p+q\right)^{3}=p^{3}+3p^{2}q+3pq^{2}+q^{3} để bung rộng \left(\frac{1}{2}a+\frac{2}{3}b\right)^{3}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Sử dụng tính chất phân phối để nhân \frac{1}{2}a-\frac{2}{3}b với \frac{1}{8}a^{3}+\frac{1}{2}a^{2}b+\frac{2}{3}ab^{2}+\frac{8}{27}b^{3} và kết hợp các số hạng tương đương.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Xét \left(\frac{1}{4}a^{2}-\frac{4}{9}b^{2}\right)\left(\frac{4}{9}b^{2}+\frac{1}{4}a^{2}\right). Có thể biến đổi phép nhân thành hiệu các bình phương bằng cách sử dụng quy tắc: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}\left(a^{2}\right)^{2}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Khai triển \left(\frac{1}{4}a^{2}\right)^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\left(\frac{1}{4}\right)^{2}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Tính \frac{1}{4} mũ 2 và ta có \frac{1}{16}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}\left(b^{2}\right)^{2}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Khai triển \left(\frac{4}{9}b^{2}\right)^{2}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\left(\frac{4}{9}\right)^{2}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để nâng lũy thừa của một số thành một lũy thừa khác, hãy nhân các số mũ với nhau. Nhân 2 với 2 để có kết quả 4.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\left(\frac{1}{16}a^{4}-\frac{16}{81}b^{4}\right)-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Tính \frac{4}{9} mũ 2 và ta có \frac{16}{81}.
\frac{1}{16}a^{4}+\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}-\frac{1}{16}a^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Để tìm số đối của \frac{1}{16}a^{4}-\frac{16}{81}b^{4}, hãy tìm số đối của mỗi số hạng.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{16}{81}b^{4}+\frac{16}{81}b^{4}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Kết hợp \frac{1}{16}a^{4} và -\frac{1}{16}a^{4} để có được 0.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{3}ab\left(\frac{1}{2}a^{2}+\frac{1}{9}b^{2}\right)
Kết hợp -\frac{16}{81}b^{4} và \frac{16}{81}b^{4} để có được 0.
\frac{1}{6}a^{3}b-\frac{8}{27}ab^{3}-\frac{1}{6}a^{3}b-\frac{1}{27}ab^{3}
Sử dụng tính chất phân phối để nhân -\frac{1}{3}ab với \frac{1}{2}a^{2}+\frac{1}{9}b^{2}.
-\frac{8}{27}ab^{3}-\frac{1}{27}ab^{3}
Kết hợp \frac{1}{6}a^{3}b và -\frac{1}{6}a^{3}b để có được 0.
-\frac{1}{3}ab^{3}
Kết hợp -\frac{8}{27}ab^{3} và -\frac{1}{27}ab^{3} để có được -\frac{1}{3}ab^{3}.