Asosiy tarkibga oʻtish
z_1 uchun yechish
Tick mark Image
z_2 uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

z_{1}z_{2}=\left(1-i\right)\sqrt{3}+\left(1+i\right)
1-i ga \sqrt{3}+i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z_{2}z_{1}=\sqrt{3}\left(1-i\right)+\left(1+i\right)
Tenglama standart shaklda.
\frac{z_{2}z_{1}}{z_{2}}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{2}}
Ikki tarafini z_{2} ga bo‘ling.
z_{1}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{2}}
z_{2} ga bo'lish z_{2} ga ko'paytirishni bekor qiladi.
z_{1}z_{2}=\left(1-i\right)\sqrt{3}+\left(1+i\right)
1-i ga \sqrt{3}+i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z_{1}z_{2}=\sqrt{3}\left(1-i\right)+\left(1+i\right)
Tenglama standart shaklda.
\frac{z_{1}z_{2}}{z_{1}}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{1}}
Ikki tarafini z_{1} ga bo‘ling.
z_{2}=\frac{\sqrt{3}\left(1-i\right)+\left(1+i\right)}{z_{1}}
z_{1} ga bo'lish z_{1} ga ko'paytirishni bekor qiladi.