z uchun yechish
z = \frac{3}{2} = 1\frac{1}{2} = 1,5
Baham ko'rish
Klipbordga nusxa olish
z^{2}-3z+\frac{9}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va \frac{9}{4} ni c bilan almashtiring.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
-3 kvadratini chiqarish.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
-4 ni \frac{9}{4} marotabaga ko'paytirish.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
9 ni -9 ga qo'shish.
z=-\frac{-3}{2}
0 ning kvadrat ildizini chiqarish.
z=\frac{3}{2}
-3 ning teskarisi 3 ga teng.
z^{2}-3z+\frac{9}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\left(z-\frac{3}{2}\right)^{2}=0
z^{2}-3z+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
Qisqartirish.
z=\frac{3}{2} z=\frac{3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
z=\frac{3}{2}
Tenglama yechildi. Yechimlar bir xil.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}