Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

z^{2}-3z+\frac{9}{4}=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times \frac{9}{4}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -3 ni b va \frac{9}{4} ni c bilan almashtiring.
z=\frac{-\left(-3\right)±\sqrt{9-4\times \frac{9}{4}}}{2}
-3 kvadratini chiqarish.
z=\frac{-\left(-3\right)±\sqrt{9-9}}{2}
-4 ni \frac{9}{4} marotabaga ko'paytirish.
z=\frac{-\left(-3\right)±\sqrt{0}}{2}
9 ni -9 ga qo'shish.
z=-\frac{-3}{2}
0 ning kvadrat ildizini chiqarish.
z=\frac{3}{2}
-3 ning teskarisi 3 ga teng.
z^{2}-3z+\frac{9}{4}=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\left(z-\frac{3}{2}\right)^{2}=0
z^{2}-3z+\frac{9}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z-\frac{3}{2}\right)^{2}}=\sqrt{0}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z-\frac{3}{2}=0 z-\frac{3}{2}=0
Qisqartirish.
z=\frac{3}{2} z=\frac{3}{2}
\frac{3}{2} ni tenglamaning ikkala tarafiga qo'shish.
z=\frac{3}{2}
Tenglama yechildi. Yechimlar bir xil.