Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

z\left(z+7\right)
z omili.
z^{2}+7z=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
z=\frac{-7±\sqrt{7^{2}}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z=\frac{-7±7}{2}
7^{2} ning kvadrat ildizini chiqarish.
z=\frac{0}{2}
z=\frac{-7±7}{2} tenglamasini yeching, bunda ± musbat. -7 ni 7 ga qo'shish.
z=0
0 ni 2 ga bo'lish.
z=-\frac{14}{2}
z=\frac{-7±7}{2} tenglamasini yeching, bunda ± manfiy. -7 dan 7 ni ayirish.
z=-7
-14 ni 2 ga bo'lish.
z^{2}+7z=z\left(z-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun 0 ga va x_{2} uchun -7 ga bo‘ling.
z^{2}+7z=z\left(z+7\right)
p-\left(-q\right) shaklining barcha amallarigani p+q ga soddalashtiring.