z uchun yechish
z=-\sqrt{11}i-7\approx -7-3,31662479i
z=-7+\sqrt{11}i\approx -7+3,31662479i
Baham ko'rish
Klipbordga nusxa olish
z^{2}+3z-30=2z^{2}+17z+30
2z+5 ga z+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
z^{2}+3z-30-2z^{2}=17z+30
Ikkala tarafdan 2z^{2} ni ayirish.
-z^{2}+3z-30=17z+30
-z^{2} ni olish uchun z^{2} va -2z^{2} ni birlashtirish.
-z^{2}+3z-30-17z=30
Ikkala tarafdan 17z ni ayirish.
-z^{2}-14z-30=30
-14z ni olish uchun 3z va -17z ni birlashtirish.
-z^{2}-14z-30-30=0
Ikkala tarafdan 30 ni ayirish.
-z^{2}-14z-60=0
-60 olish uchun -30 dan 30 ni ayirish.
z=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, -14 ni b va -60 ni c bilan almashtiring.
z=\frac{-\left(-14\right)±\sqrt{196-4\left(-1\right)\left(-60\right)}}{2\left(-1\right)}
-14 kvadratini chiqarish.
z=\frac{-\left(-14\right)±\sqrt{196+4\left(-60\right)}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
z=\frac{-\left(-14\right)±\sqrt{196-240}}{2\left(-1\right)}
4 ni -60 marotabaga ko'paytirish.
z=\frac{-\left(-14\right)±\sqrt{-44}}{2\left(-1\right)}
196 ni -240 ga qo'shish.
z=\frac{-\left(-14\right)±2\sqrt{11}i}{2\left(-1\right)}
-44 ning kvadrat ildizini chiqarish.
z=\frac{14±2\sqrt{11}i}{2\left(-1\right)}
-14 ning teskarisi 14 ga teng.
z=\frac{14±2\sqrt{11}i}{-2}
2 ni -1 marotabaga ko'paytirish.
z=\frac{14+2\sqrt{11}i}{-2}
z=\frac{14±2\sqrt{11}i}{-2} tenglamasini yeching, bunda ± musbat. 14 ni 2i\sqrt{11} ga qo'shish.
z=-\sqrt{11}i-7
14+2i\sqrt{11} ni -2 ga bo'lish.
z=\frac{-2\sqrt{11}i+14}{-2}
z=\frac{14±2\sqrt{11}i}{-2} tenglamasini yeching, bunda ± manfiy. 14 dan 2i\sqrt{11} ni ayirish.
z=-7+\sqrt{11}i
14-2i\sqrt{11} ni -2 ga bo'lish.
z=-\sqrt{11}i-7 z=-7+\sqrt{11}i
Tenglama yechildi.
z^{2}+3z-30=2z^{2}+17z+30
2z+5 ga z+6 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
z^{2}+3z-30-2z^{2}=17z+30
Ikkala tarafdan 2z^{2} ni ayirish.
-z^{2}+3z-30=17z+30
-z^{2} ni olish uchun z^{2} va -2z^{2} ni birlashtirish.
-z^{2}+3z-30-17z=30
Ikkala tarafdan 17z ni ayirish.
-z^{2}-14z-30=30
-14z ni olish uchun 3z va -17z ni birlashtirish.
-z^{2}-14z=30+30
30 ni ikki tarafga qo’shing.
-z^{2}-14z=60
60 olish uchun 30 va 30'ni qo'shing.
\frac{-z^{2}-14z}{-1}=\frac{60}{-1}
Ikki tarafini -1 ga bo‘ling.
z^{2}+\left(-\frac{14}{-1}\right)z=\frac{60}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
z^{2}+14z=\frac{60}{-1}
-14 ni -1 ga bo'lish.
z^{2}+14z=-60
60 ni -1 ga bo'lish.
z^{2}+14z+7^{2}=-60+7^{2}
14 ni bo‘lish, x shartining koeffitsienti, 2 ga 7 olish uchun. Keyin, 7 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
z^{2}+14z+49=-60+49
7 kvadratini chiqarish.
z^{2}+14z+49=-11
-60 ni 49 ga qo'shish.
\left(z+7\right)^{2}=-11
z^{2}+14z+49 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+7\right)^{2}}=\sqrt{-11}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+7=\sqrt{11}i z+7=-\sqrt{11}i
Qisqartirish.
z=-7+\sqrt{11}i z=-\sqrt{11}i-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}