z uchun yechish
z=\sqrt{7}-8\approx -5,354248689
z=-\sqrt{7}-8\approx -10,645751311
Baham ko'rish
Klipbordga nusxa olish
z^{2}+16z+64=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z^{2}+16z+64-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
z^{2}+16z+64-7=0
O‘zidan 7 ayirilsa 0 qoladi.
z^{2}+16z+57=0
64 dan 7 ni ayirish.
z=\frac{-16±\sqrt{16^{2}-4\times 57}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 16 ni b va 57 ni c bilan almashtiring.
z=\frac{-16±\sqrt{256-4\times 57}}{2}
16 kvadratini chiqarish.
z=\frac{-16±\sqrt{256-228}}{2}
-4 ni 57 marotabaga ko'paytirish.
z=\frac{-16±\sqrt{28}}{2}
256 ni -228 ga qo'shish.
z=\frac{-16±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
z=\frac{2\sqrt{7}-16}{2}
z=\frac{-16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -16 ni 2\sqrt{7} ga qo'shish.
z=\sqrt{7}-8
-16+2\sqrt{7} ni 2 ga bo'lish.
z=\frac{-2\sqrt{7}-16}{2}
z=\frac{-16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -16 dan 2\sqrt{7} ni ayirish.
z=-\sqrt{7}-8
-16-2\sqrt{7} ni 2 ga bo'lish.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Tenglama yechildi.
\left(z+8\right)^{2}=7
z^{2}+16z+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+8\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+8=\sqrt{7} z+8=-\sqrt{7}
Qisqartirish.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Tenglamaning ikkala tarafidan 8 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}