Asosiy tarkibga oʻtish
z uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

z^{2}+16z+64=7
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
z^{2}+16z+64-7=7-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
z^{2}+16z+64-7=0
O‘zidan 7 ayirilsa 0 qoladi.
z^{2}+16z+57=0
64 dan 7 ni ayirish.
z=\frac{-16±\sqrt{16^{2}-4\times 57}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 16 ni b va 57 ni c bilan almashtiring.
z=\frac{-16±\sqrt{256-4\times 57}}{2}
16 kvadratini chiqarish.
z=\frac{-16±\sqrt{256-228}}{2}
-4 ni 57 marotabaga ko'paytirish.
z=\frac{-16±\sqrt{28}}{2}
256 ni -228 ga qo'shish.
z=\frac{-16±2\sqrt{7}}{2}
28 ning kvadrat ildizini chiqarish.
z=\frac{2\sqrt{7}-16}{2}
z=\frac{-16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± musbat. -16 ni 2\sqrt{7} ga qo'shish.
z=\sqrt{7}-8
-16+2\sqrt{7} ni 2 ga bo'lish.
z=\frac{-2\sqrt{7}-16}{2}
z=\frac{-16±2\sqrt{7}}{2} tenglamasini yeching, bunda ± manfiy. -16 dan 2\sqrt{7} ni ayirish.
z=-\sqrt{7}-8
-16-2\sqrt{7} ni 2 ga bo'lish.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Tenglama yechildi.
\left(z+8\right)^{2}=7
z^{2}+16z+64 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(z+8\right)^{2}}=\sqrt{7}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
z+8=\sqrt{7} z+8=-\sqrt{7}
Qisqartirish.
z=\sqrt{7}-8 z=-\sqrt{7}-8
Tenglamaning ikkala tarafidan 8 ni ayirish.