x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{z}{y}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&z=0\text{ and }y=0\end{matrix}\right,
y uchun yechish (complex solution)
\left\{\begin{matrix}y=\frac{z}{x}\text{, }&x\neq 0\\y\in \mathrm{C}\text{, }&z=0\text{ and }x=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{z}{y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=0\text{ and }y=0\end{matrix}\right,
y uchun yechish
\left\{\begin{matrix}y=\frac{z}{x}\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&z=0\text{ and }x=0\end{matrix}\right,
Viktorina
Linear Equation
z = x \cdot y
Baham ko'rish
Klipbordga nusxa olish
xy=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
yx=z
Tenglama standart shaklda.
\frac{yx}{y}=\frac{z}{y}
Ikki tarafini y ga bo‘ling.
x=\frac{z}{y}
y ga bo'lish y ga ko'paytirishni bekor qiladi.
xy=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{xy}{x}=\frac{z}{x}
Ikki tarafini x ga bo‘ling.
y=\frac{z}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
xy=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
yx=z
Tenglama standart shaklda.
\frac{yx}{y}=\frac{z}{y}
Ikki tarafini y ga bo‘ling.
x=\frac{z}{y}
y ga bo'lish y ga ko'paytirishni bekor qiladi.
xy=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{xy}{x}=\frac{z}{x}
Ikki tarafini x ga bo‘ling.
y=\frac{z}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}