a uchun yechish
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-1+4i\right)
z uchun yechish
z=\left(-1-i\right)a+\left(-5+3i\right)
Baham ko'rish
Klipbordga nusxa olish
z=\left(a+5\right)\left(-1\right)+\left(a-3\right)i^{7}
6 daraja ko‘rsatkichini i ga hisoblang va -1 ni qiymatni oling.
z=-a-5+\left(a-3\right)i^{7}
a+5 ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z=-a-5+\left(a-3\right)\left(-i\right)
7 daraja ko‘rsatkichini i ga hisoblang va -i ni qiymatni oling.
z=-a-5-ia+3i
a-3 ga -i ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
z=\left(-1-i\right)a-5+3i
\left(-1-i\right)a ni olish uchun -a va -ia ni birlashtirish.
\left(-1-i\right)a-5+3i=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(-1-i\right)a+3i=z+5
5 ni ikki tarafga qo’shing.
\left(-1-i\right)a=z+5-3i
Ikkala tarafdan 3i ni ayirish.
\left(-1-i\right)a=z+\left(5-3i\right)
Tenglama standart shaklda.
\frac{\left(-1-i\right)a}{-1-i}=\frac{z+\left(5-3i\right)}{-1-i}
Ikki tarafini -1-i ga bo‘ling.
a=\frac{z+\left(5-3i\right)}{-1-i}
-1-i ga bo'lish -1-i ga ko'paytirishni bekor qiladi.
a=\left(-\frac{1}{2}+\frac{1}{2}i\right)z+\left(-1+4i\right)
z+\left(5-3i\right) ni -1-i ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}