z uchun yechish
z=1-3i
z'ni tayinlash
z≔1-3i
Baham ko'rish
Klipbordga nusxa olish
z=\frac{\left(4-2i\right)\left(1-i\right)}{\left(1+i\right)\left(1-i\right)}
\frac{4-2i}{1+i}ning surat va maxrajini murakkab tutash maxraj 1-i bilan ko‘paytiring.
z=\frac{\left(4-2i\right)\left(1-i\right)}{1^{2}-i^{2}}
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(4-2i\right)\left(1-i\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)i^{2}}{2}
Binomlarni ko‘paytirgandek 4-2i va 1-i murakkab sonlarni ko‘paytiring.
z=\frac{4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right)}{2}
Ta’rifi bo‘yicha, i^{2} – bu -1.
z=\frac{4-4i-2i-2}{2}
4\times 1+4\left(-i\right)-2i-2\left(-1\right)\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
z=\frac{4-2+\left(-4-2\right)i}{2}
4-4i-2i-2 ichida real va mavhum qismlarni birlashtiring.
z=\frac{2-6i}{2}
4-2+\left(-4-2\right)i ichida qo‘shishlarni bajaring.
z=1-3i
1-3i ni olish uchun 2-6i ni 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}