t uchun yechish
t=\left(\frac{3}{20}-\frac{1}{20}i\right)z+\left(\frac{31}{5}+\frac{111}{10}i\right)
z uchun yechish
z=\left(6+2i\right)t+\left(-15-79i\right)
Baham ko'rish
Klipbordga nusxa olish
z=\left(6+2i\right)t-\left(5-3i\right)\left(2+3i\right)^{2}+\left(1+i\right)^{5}
\left(6+2i\right)t ni olish uchun 20t ni 3-i ga bo‘ling.
z=\left(6+2i\right)t-\left(5-3i\right)\left(-5+12i\right)+\left(1+i\right)^{5}
2 daraja ko‘rsatkichini 2+3i ga hisoblang va -5+12i ni qiymatni oling.
z=\left(6+2i\right)t-\left(11+75i\right)+\left(1+i\right)^{5}
11+75i hosil qilish uchun 5-3i va -5+12i ni ko'paytirish.
z=\left(6+2i\right)t-\left(11+75i\right)+\left(-4-4i\right)
5 daraja ko‘rsatkichini 1+i ga hisoblang va -4-4i ni qiymatni oling.
\left(6+2i\right)t-\left(11+75i\right)+\left(-4-4i\right)=z
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(6+2i\right)t-\left(11+75i\right)=z+\left(4+4i\right)
4+4i ni ikki tarafga qo’shing.
\left(6+2i\right)t=z+\left(4+4i\right)+\left(11+75i\right)
11+75i ni ikki tarafga qo’shing.
\left(6+2i\right)t=z+15+79i
4+4i+\left(11+75i\right) ichida qo‘shishlarni bajaring.
\left(6+2i\right)t=z+\left(15+79i\right)
Tenglama standart shaklda.
\frac{\left(6+2i\right)t}{6+2i}=\frac{z+\left(15+79i\right)}{6+2i}
Ikki tarafini 6+2i ga bo‘ling.
t=\frac{z+\left(15+79i\right)}{6+2i}
6+2i ga bo'lish 6+2i ga ko'paytirishni bekor qiladi.
t=\left(\frac{3}{20}-\frac{1}{20}i\right)z+\left(\frac{31}{5}+\frac{111}{10}i\right)
z+\left(15+79i\right) ni 6+2i ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}