z uchun yechish
z=-\frac{7}{5}-\frac{1}{5}i=-1,4-0,2i
z'ni tayinlash
z≔-\frac{7}{5}-\frac{1}{5}i
Baham ko'rish
Klipbordga nusxa olish
z=\frac{\left(1+3i\right)\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}i
\frac{1+3i}{2-i}ning surat va maxrajini murakkab tutash maxraj 2+i bilan ko‘paytiring.
z=\frac{\left(1+3i\right)\left(2+i\right)}{2^{2}-i^{2}}i
Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
z=\frac{\left(1+3i\right)\left(2+i\right)}{5}i
Ta’rifi bo‘yicha, i^{2} – bu -1. Maxrajini hisoblang.
z=\frac{1\times 2+i+3i\times 2+3i^{2}}{5}i
Binomlarni ko‘paytirgandek 1+3i va 2+i murakkab sonlarni ko‘paytiring.
z=\frac{1\times 2+i+3i\times 2+3\left(-1\right)}{5}i
Ta’rifi bo‘yicha, i^{2} – bu -1.
z=\frac{2+i+6i-3}{5}i
1\times 2+i+3i\times 2+3\left(-1\right) ichidagi ko‘paytirishlarni bajaring.
z=\frac{2-3+\left(1+6\right)i}{5}i
2+i+6i-3 ichida real va mavhum qismlarni birlashtiring.
z=\frac{-1+7i}{5}i
2-3+\left(1+6\right)i ichida qo‘shishlarni bajaring.
z=\left(-\frac{1}{5}+\frac{7}{5}i\right)i
-\frac{1}{5}+\frac{7}{5}i ni olish uchun -1+7i ni 5 ga bo‘ling.
z=-\frac{1}{5}i+\frac{7}{5}i^{2}
-\frac{1}{5}+\frac{7}{5}i ni i marotabaga ko'paytirish.
z=-\frac{1}{5}i+\frac{7}{5}\left(-1\right)
Ta’rifi bo‘yicha, i^{2} – bu -1.
z=-\frac{7}{5}-\frac{1}{5}i
-\frac{1}{5}i+\frac{7}{5}\left(-1\right) ichidagi ko‘paytirishlarni bajaring. Shartlarni qayta saralash.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}