x uchun yechish (complex solution)
\left\{\begin{matrix}x\in e^{\frac{2\pi i}{7}}y^{-\frac{2}{7}},y^{-\frac{2}{7}},e^{\frac{4\pi i}{7}}y^{-\frac{2}{7}},e^{\frac{6\pi i}{7}}y^{-\frac{2}{7}},e^{\frac{8\pi i}{7}}y^{-\frac{2}{7}},e^{\frac{10\pi i}{7}}y^{-\frac{2}{7}},e^{\frac{12\pi i}{7}}y^{-\frac{2}{7}}\text{, }&y\neq 0\\x\in \mathrm{C}\text{, }&y=0\end{matrix}\right,
y uchun yechish (complex solution)
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y=-x^{-\frac{7}{2}}\text{; }y=x^{-\frac{7}{2}}\text{, }&x\neq 0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{1}{y^{\frac{2}{7}}}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&y=0\end{matrix}\right,
y uchun yechish
\left\{\begin{matrix}\\y=0\text{, }&\text{unconditionally}\\y=\frac{1}{x^{\frac{7}{2}}}\text{; }y=-\frac{1}{x^{\frac{7}{2}}}\text{, }&x>0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}