x uchun yechish
x=2y-z
y uchun yechish
y=\frac{x+z}{2}
Baham ko'rish
Klipbordga nusxa olish
y=\frac{1}{2}x+\frac{1}{2}z
\frac{1}{2}x+\frac{1}{2}z natijani olish uchun x+z ning har bir ifodasini 2 ga bo‘ling.
\frac{1}{2}x+\frac{1}{2}z=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{1}{2}x=y-\frac{1}{2}z
Ikkala tarafdan \frac{1}{2}z ni ayirish.
\frac{1}{2}x=-\frac{z}{2}+y
Tenglama standart shaklda.
\frac{\frac{1}{2}x}{\frac{1}{2}}=\frac{-\frac{z}{2}+y}{\frac{1}{2}}
Ikkala tarafini 2 ga ko‘paytiring.
x=\frac{-\frac{z}{2}+y}{\frac{1}{2}}
\frac{1}{2} ga bo'lish \frac{1}{2} ga ko'paytirishni bekor qiladi.
x=2y-z
y-\frac{z}{2} ni \frac{1}{2} ga bo'lish y-\frac{z}{2} ga k'paytirish \frac{1}{2} ga qaytarish.
y=\frac{1}{2}x+\frac{1}{2}z
\frac{1}{2}x+\frac{1}{2}z natijani olish uchun x+z ning har bir ifodasini 2 ga bo‘ling.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}