Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y-\frac{2y+3}{3y-2}=0
Ikkala tarafdan \frac{2y+3}{3y-2} ni ayirish.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. y ni \frac{3y-2}{3y-2} marotabaga ko'paytirish.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
\frac{y\left(3y-2\right)}{3y-2} va \frac{2y+3}{3y-2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
y\left(3y-2\right)-\left(2y+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3y^{2}-4y-3}{3y-2}=0
3y^{2}-2y-2y-3 kabi iboralarga o‘xshab birlashtiring.
3y^{2}-4y-3=0
y qiymati \frac{2}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3y-2 ga ko'paytirish.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 3 ni a, -4 ni b va -3 ni c bilan almashtiring.
y=\frac{-\left(-4\right)±\sqrt{16-4\times 3\left(-3\right)}}{2\times 3}
-4 kvadratini chiqarish.
y=\frac{-\left(-4\right)±\sqrt{16-12\left(-3\right)}}{2\times 3}
-4 ni 3 marotabaga ko'paytirish.
y=\frac{-\left(-4\right)±\sqrt{16+36}}{2\times 3}
-12 ni -3 marotabaga ko'paytirish.
y=\frac{-\left(-4\right)±\sqrt{52}}{2\times 3}
16 ni 36 ga qo'shish.
y=\frac{-\left(-4\right)±2\sqrt{13}}{2\times 3}
52 ning kvadrat ildizini chiqarish.
y=\frac{4±2\sqrt{13}}{2\times 3}
-4 ning teskarisi 4 ga teng.
y=\frac{4±2\sqrt{13}}{6}
2 ni 3 marotabaga ko'paytirish.
y=\frac{2\sqrt{13}+4}{6}
y=\frac{4±2\sqrt{13}}{6} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{13} ga qo'shish.
y=\frac{\sqrt{13}+2}{3}
4+2\sqrt{13} ni 6 ga bo'lish.
y=\frac{4-2\sqrt{13}}{6}
y=\frac{4±2\sqrt{13}}{6} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{13} ni ayirish.
y=\frac{2-\sqrt{13}}{3}
4-2\sqrt{13} ni 6 ga bo'lish.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
Tenglama yechildi.
y-\frac{2y+3}{3y-2}=0
Ikkala tarafdan \frac{2y+3}{3y-2} ni ayirish.
\frac{y\left(3y-2\right)}{3y-2}-\frac{2y+3}{3y-2}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. y ni \frac{3y-2}{3y-2} marotabaga ko'paytirish.
\frac{y\left(3y-2\right)-\left(2y+3\right)}{3y-2}=0
\frac{y\left(3y-2\right)}{3y-2} va \frac{2y+3}{3y-2} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{3y^{2}-2y-2y-3}{3y-2}=0
y\left(3y-2\right)-\left(2y+3\right) ichidagi ko‘paytirishlarni bajaring.
\frac{3y^{2}-4y-3}{3y-2}=0
3y^{2}-2y-2y-3 kabi iboralarga o‘xshab birlashtiring.
3y^{2}-4y-3=0
y qiymati \frac{2}{3} teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 3y-2 ga ko'paytirish.
3y^{2}-4y=3
3 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
\frac{3y^{2}-4y}{3}=\frac{3}{3}
Ikki tarafini 3 ga bo‘ling.
y^{2}-\frac{4}{3}y=\frac{3}{3}
3 ga bo'lish 3 ga ko'paytirishni bekor qiladi.
y^{2}-\frac{4}{3}y=1
3 ni 3 ga bo'lish.
y^{2}-\frac{4}{3}y+\left(-\frac{2}{3}\right)^{2}=1+\left(-\frac{2}{3}\right)^{2}
-\frac{4}{3} ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{2}{3} olish uchun. Keyin, -\frac{2}{3} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-\frac{4}{3}y+\frac{4}{9}=1+\frac{4}{9}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{2}{3} kvadratini chiqarish.
y^{2}-\frac{4}{3}y+\frac{4}{9}=\frac{13}{9}
1 ni \frac{4}{9} ga qo'shish.
\left(y-\frac{2}{3}\right)^{2}=\frac{13}{9}
y^{2}-\frac{4}{3}y+\frac{4}{9} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{2}{3}\right)^{2}}=\sqrt{\frac{13}{9}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{2}{3}=\frac{\sqrt{13}}{3} y-\frac{2}{3}=-\frac{\sqrt{13}}{3}
Qisqartirish.
y=\frac{\sqrt{13}+2}{3} y=\frac{2-\sqrt{13}}{3}
\frac{2}{3} ni tenglamaning ikkala tarafiga qo'shish.