y uchun yechish
y=-\frac{50500\sqrt{101}}{3}+22732\approx -146440,906288868
y'ni tayinlash
y≔-\frac{50500\sqrt{101}}{3}+22732
Grafik
Viktorina
Linear Equation
5xshash muammolar:
y= \frac{ -4 }{ 3 } \times 2525 \sqrt{ 2525 } +9 \times 2525+7
Baham ko'rish
Klipbordga nusxa olish
y=2525\left(-\frac{4}{3}\right)\sqrt{2525}+9\times 2525+7
\frac{-4}{3} kasri manfiy belgini olib tashlash bilan -\frac{4}{3} sifatida qayta yozilishi mumkin.
y=\frac{2525\left(-4\right)}{3}\sqrt{2525}+9\times 2525+7
2525\left(-\frac{4}{3}\right) ni yagona kasrga aylantiring.
y=\frac{-10100}{3}\sqrt{2525}+9\times 2525+7
-10100 hosil qilish uchun 2525 va -4 ni ko'paytirish.
y=-\frac{10100}{3}\sqrt{2525}+9\times 2525+7
\frac{-10100}{3} kasri manfiy belgini olib tashlash bilan -\frac{10100}{3} sifatida qayta yozilishi mumkin.
y=-\frac{10100}{3}\times 5\sqrt{101}+9\times 2525+7
Faktor: 2525=5^{2}\times 101. \sqrt{5^{2}\times 101} koʻpaytmasining kvadrat ildizini \sqrt{5^{2}}\sqrt{101} kvadrat ildizlarining koʻpaytmasi sifatida qayta yozing. 5^{2} ning kvadrat ildizini chiqarish.
y=\frac{-10100\times 5}{3}\sqrt{101}+9\times 2525+7
-\frac{10100}{3}\times 5 ni yagona kasrga aylantiring.
y=\frac{-50500}{3}\sqrt{101}+9\times 2525+7
-50500 hosil qilish uchun -10100 va 5 ni ko'paytirish.
y=-\frac{50500}{3}\sqrt{101}+9\times 2525+7
\frac{-50500}{3} kasri manfiy belgini olib tashlash bilan -\frac{50500}{3} sifatida qayta yozilishi mumkin.
y=-\frac{50500}{3}\sqrt{101}+22725+7
22725 hosil qilish uchun 9 va 2525 ni ko'paytirish.
y=-\frac{50500}{3}\sqrt{101}+22732
22732 olish uchun 22725 va 7'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}