y uchun yechish
y=\frac{4\left(40x+9\right)}{x^{2}}
x\neq 0
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{2\left(\sqrt{9y+1600}+40\right)}{y}\text{; }x=\frac{2\left(-\sqrt{9y+1600}+40\right)}{y}\text{, }&y\neq 0\\x=-\frac{9}{40}=-0,225\text{, }&y=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{2\left(\sqrt{9y+1600}+40\right)}{y}\text{; }x=\frac{2\left(-\sqrt{9y+1600}+40\right)}{y}\text{, }&y\neq 0\text{ and }y\geq -\frac{1600}{9}\\x=-\frac{9}{40}=-0,225\text{, }&y=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
yx^{2}-36=160x
160x ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
yx^{2}=160x+36
36 ni ikki tarafga qo’shing.
x^{2}y=160x+36
Tenglama standart shaklda.
\frac{x^{2}y}{x^{2}}=\frac{160x+36}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
y=\frac{160x+36}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
y=\frac{4\left(40x+9\right)}{x^{2}}
160x+36 ni x^{2} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}