x uchun yechish
x=\frac{3y}{2}-11
y uchun yechish
y=\frac{2\left(x+11\right)}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
y-4=\frac{2}{3}x+\frac{10}{3}
\frac{2}{3} ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2}{3}x+\frac{10}{3}=y-4
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{2}{3}x=y-4-\frac{10}{3}
Ikkala tarafdan \frac{10}{3} ni ayirish.
\frac{2}{3}x=y-\frac{22}{3}
-\frac{22}{3} olish uchun -4 dan \frac{10}{3} ni ayirish.
\frac{\frac{2}{3}x}{\frac{2}{3}}=\frac{y-\frac{22}{3}}{\frac{2}{3}}
Tenglamaning ikki tarafini \frac{2}{3} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
x=\frac{y-\frac{22}{3}}{\frac{2}{3}}
\frac{2}{3} ga bo'lish \frac{2}{3} ga ko'paytirishni bekor qiladi.
x=\frac{3y}{2}-11
y-\frac{22}{3} ni \frac{2}{3} ga bo'lish y-\frac{22}{3} ga k'paytirish \frac{2}{3} ga qaytarish.
y-4=\frac{2}{3}x+\frac{10}{3}
\frac{2}{3} ga x+5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y=\frac{2}{3}x+\frac{10}{3}+4
4 ni ikki tarafga qo’shing.
y=\frac{2}{3}x+\frac{22}{3}
\frac{22}{3} olish uchun \frac{10}{3} va 4'ni qo'shing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}