Asosiy tarkibga oʻtish
y, x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y-3x=2,-2y+7x=8
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
y-3x=2
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
y=3x+2
3x ni tenglamaning ikkala tarafiga qo'shish.
-2\left(3x+2\right)+7x=8
3x+2 ni y uchun boshqa tenglamada almashtirish, -2y+7x=8.
-6x-4+7x=8
-2 ni 3x+2 marotabaga ko'paytirish.
x-4=8
-6x ni 7x ga qo'shish.
x=12
4 ni tenglamaning ikkala tarafiga qo'shish.
y=3\times 12+2
12 ni x uchun y=3x+2 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=36+2
3 ni 12 marotabaga ko'paytirish.
y=38
2 ni 36 ga qo'shish.
y=38,x=12
Tizim hal qilindi.
y-3x=2,-2y+7x=8
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\-2&7\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-3\left(-2\right)\right)}&-\frac{-3}{7-\left(-3\left(-2\right)\right)}\\-\frac{-2}{7-\left(-3\left(-2\right)\right)}&\frac{1}{7-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7&3\\2&1\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\times 2+3\times 8\\2\times 2+8\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}38\\12\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=38,x=12
y va x matritsa elementlarini chiqarib olish.
y-3x=2,-2y+7x=8
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
-2y-2\left(-3\right)x=-2\times 2,-2y+7x=8
y va -2y ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni -2 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
-2y+6x=-4,-2y+7x=8
Qisqartirish.
-2y+2y+6x-7x=-4-8
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali -2y+6x=-4 dan -2y+7x=8 ni ayirish.
6x-7x=-4-8
-2y ni 2y ga qo'shish. -2y va 2y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-x=-4-8
6x ni -7x ga qo'shish.
-x=-12
-4 ni -8 ga qo'shish.
x=12
Ikki tarafini -1 ga bo‘ling.
-2y+7\times 12=8
12 ni x uchun -2y+7x=8 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
-2y+84=8
7 ni 12 marotabaga ko'paytirish.
-2y=-76
Tenglamaning ikkala tarafidan 84 ni ayirish.
y=38
Ikki tarafini -2 ga bo‘ling.
y=38,x=12
Tizim hal qilindi.