Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4x^{2}+2x-3=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
x=\frac{-2±\sqrt{2^{2}-4\times 4\left(-3\right)}}{2\times 4}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{4-4\times 4\left(-3\right)}}{2\times 4}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4-16\left(-3\right)}}{2\times 4}
-4 ni 4 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{4+48}}{2\times 4}
-16 ni -3 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{52}}{2\times 4}
4 ni 48 ga qo'shish.
x=\frac{-2±2\sqrt{13}}{2\times 4}
52 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{13}}{8}
2 ni 4 marotabaga ko'paytirish.
x=\frac{2\sqrt{13}-2}{8}
x=\frac{-2±2\sqrt{13}}{8} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{13} ga qo'shish.
x=\frac{\sqrt{13}-1}{4}
-2+2\sqrt{13} ni 8 ga bo'lish.
x=\frac{-2\sqrt{13}-2}{8}
x=\frac{-2±2\sqrt{13}}{8} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{13} ni ayirish.
x=\frac{-\sqrt{13}-1}{4}
-2-2\sqrt{13} ni 8 ga bo'lish.
4x^{2}+2x-3=4\left(x-\frac{\sqrt{13}-1}{4}\right)\left(x-\frac{-\sqrt{13}-1}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-1+\sqrt{13}}{4} ga va x_{2} uchun \frac{-1-\sqrt{13}}{4} ga bo‘ling.