Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y\left(y-1\right)=0
y omili.
y=0 y=1
Tenglamani yechish uchun y=0 va y-1=0 ni yeching.
y^{2}-y=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-1\right)±\sqrt{1}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 0 ni c bilan almashtiring.
y=\frac{-\left(-1\right)±1}{2}
1 ning kvadrat ildizini chiqarish.
y=\frac{1±1}{2}
-1 ning teskarisi 1 ga teng.
y=\frac{2}{2}
y=\frac{1±1}{2} tenglamasini yeching, bunda ± musbat. 1 ni 1 ga qo'shish.
y=1
2 ni 2 ga bo'lish.
y=\frac{0}{2}
y=\frac{1±1}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 1 ni ayirish.
y=0
0 ni 2 ga bo'lish.
y=1 y=0
Tenglama yechildi.
y^{2}-y=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-y+\frac{1}{4}=\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\left(y-\frac{1}{2}\right)^{2}=\frac{1}{4}
y^{2}-y+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{1}{2}=\frac{1}{2} y-\frac{1}{2}=-\frac{1}{2}
Qisqartirish.
y=1 y=0
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.