Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}-y+7=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-\left(-1\right)±\sqrt{1-4\times 7}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -1 ni b va 7 ni c bilan almashtiring.
y=\frac{-\left(-1\right)±\sqrt{1-28}}{2}
-4 ni 7 marotabaga ko'paytirish.
y=\frac{-\left(-1\right)±\sqrt{-27}}{2}
1 ni -28 ga qo'shish.
y=\frac{-\left(-1\right)±3\sqrt{3}i}{2}
-27 ning kvadrat ildizini chiqarish.
y=\frac{1±3\sqrt{3}i}{2}
-1 ning teskarisi 1 ga teng.
y=\frac{1+3\sqrt{3}i}{2}
y=\frac{1±3\sqrt{3}i}{2} tenglamasini yeching, bunda ± musbat. 1 ni 3i\sqrt{3} ga qo'shish.
y=\frac{-3\sqrt{3}i+1}{2}
y=\frac{1±3\sqrt{3}i}{2} tenglamasini yeching, bunda ± manfiy. 1 dan 3i\sqrt{3} ni ayirish.
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
Tenglama yechildi.
y^{2}-y+7=0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}-y+7-7=-7
Tenglamaning ikkala tarafidan 7 ni ayirish.
y^{2}-y=-7
O‘zidan 7 ayirilsa 0 qoladi.
y^{2}-y+\left(-\frac{1}{2}\right)^{2}=-7+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-y+\frac{1}{4}=-7+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
y^{2}-y+\frac{1}{4}=-\frac{27}{4}
-7 ni \frac{1}{4} ga qo'shish.
\left(y-\frac{1}{2}\right)^{2}=-\frac{27}{4}
y^{2}-y+\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{27}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-\frac{1}{2}=\frac{3\sqrt{3}i}{2} y-\frac{1}{2}=-\frac{3\sqrt{3}i}{2}
Qisqartirish.
y=\frac{1+3\sqrt{3}i}{2} y=\frac{-3\sqrt{3}i+1}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.