Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}-4y=6
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y^{2}-4y-6=6-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
y^{2}-4y-6=0
O‘zidan 6 ayirilsa 0 qoladi.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -6 ni c bilan almashtiring.
y=\frac{-\left(-4\right)±\sqrt{16-4\left(-6\right)}}{2}
-4 kvadratini chiqarish.
y=\frac{-\left(-4\right)±\sqrt{16+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
y=\frac{-\left(-4\right)±\sqrt{40}}{2}
16 ni 24 ga qo'shish.
y=\frac{-\left(-4\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
y=\frac{4±2\sqrt{10}}{2}
-4 ning teskarisi 4 ga teng.
y=\frac{2\sqrt{10}+4}{2}
y=\frac{4±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{10} ga qo'shish.
y=\sqrt{10}+2
4+2\sqrt{10} ni 2 ga bo'lish.
y=\frac{4-2\sqrt{10}}{2}
y=\frac{4±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{10} ni ayirish.
y=2-\sqrt{10}
4-2\sqrt{10} ni 2 ga bo'lish.
y=\sqrt{10}+2 y=2-\sqrt{10}
Tenglama yechildi.
y^{2}-4y=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}-4y+\left(-2\right)^{2}=6+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-4y+4=6+4
-2 kvadratini chiqarish.
y^{2}-4y+4=10
6 ni 4 ga qo'shish.
\left(y-2\right)^{2}=10
y^{2}-4y+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-2\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-2=\sqrt{10} y-2=-\sqrt{10}
Qisqartirish.
y=\sqrt{10}+2 y=2-\sqrt{10}
2 ni tenglamaning ikkala tarafiga qo'shish.