y uchun yechish
y=\sqrt{10}+2\approx 5,16227766
y=2-\sqrt{10}\approx -1,16227766
Grafik
Baham ko'rish
Klipbordga nusxa olish
y^{2}-4y=6
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y^{2}-4y-6=6-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
y^{2}-4y-6=0
O‘zidan 6 ayirilsa 0 qoladi.
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-6\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -4 ni b va -6 ni c bilan almashtiring.
y=\frac{-\left(-4\right)±\sqrt{16-4\left(-6\right)}}{2}
-4 kvadratini chiqarish.
y=\frac{-\left(-4\right)±\sqrt{16+24}}{2}
-4 ni -6 marotabaga ko'paytirish.
y=\frac{-\left(-4\right)±\sqrt{40}}{2}
16 ni 24 ga qo'shish.
y=\frac{-\left(-4\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
y=\frac{4±2\sqrt{10}}{2}
-4 ning teskarisi 4 ga teng.
y=\frac{2\sqrt{10}+4}{2}
y=\frac{4±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 4 ni 2\sqrt{10} ga qo'shish.
y=\sqrt{10}+2
4+2\sqrt{10} ni 2 ga bo'lish.
y=\frac{4-2\sqrt{10}}{2}
y=\frac{4±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 4 dan 2\sqrt{10} ni ayirish.
y=2-\sqrt{10}
4-2\sqrt{10} ni 2 ga bo'lish.
y=\sqrt{10}+2 y=2-\sqrt{10}
Tenglama yechildi.
y^{2}-4y=6
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}-4y+\left(-2\right)^{2}=6+\left(-2\right)^{2}
-4 ni bo‘lish, x shartining koeffitsienti, 2 ga -2 olish uchun. Keyin, -2 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}-4y+4=6+4
-2 kvadratini chiqarish.
y^{2}-4y+4=10
6 ni 4 ga qo'shish.
\left(y-2\right)^{2}=10
y^{2}-4y+4 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y-2\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y-2=\sqrt{10} y-2=-\sqrt{10}
Qisqartirish.
y=\sqrt{10}+2 y=2-\sqrt{10}
2 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}