y uchun yechish
y=2\sqrt{21}\approx 9,16515139
y=-2\sqrt{21}\approx -9,16515139
Grafik
Baham ko'rish
Klipbordga nusxa olish
y^{2}=90-6
Ikkala tarafdan 6 ni ayirish.
y^{2}=84
84 olish uchun 90 dan 6 ni ayirish.
y=2\sqrt{21} y=-2\sqrt{21}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y^{2}+6-90=0
Ikkala tarafdan 90 ni ayirish.
y^{2}-84=0
-84 olish uchun 6 dan 90 ni ayirish.
y=\frac{0±\sqrt{0^{2}-4\left(-84\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 0 ni b va -84 ni c bilan almashtiring.
y=\frac{0±\sqrt{-4\left(-84\right)}}{2}
0 kvadratini chiqarish.
y=\frac{0±\sqrt{336}}{2}
-4 ni -84 marotabaga ko'paytirish.
y=\frac{0±4\sqrt{21}}{2}
336 ning kvadrat ildizini chiqarish.
y=2\sqrt{21}
y=\frac{0±4\sqrt{21}}{2} tenglamasini yeching, bunda ± musbat.
y=-2\sqrt{21}
y=\frac{0±4\sqrt{21}}{2} tenglamasini yeching, bunda ± manfiy.
y=2\sqrt{21} y=-2\sqrt{21}
Tenglama yechildi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}