Asosiy tarkibga oʻtish
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+5y=625
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y^{2}+5y-625=625-625
Tenglamaning ikkala tarafidan 625 ni ayirish.
y^{2}+5y-625=0
O‘zidan 625 ayirilsa 0 qoladi.
y=\frac{-5±\sqrt{5^{2}-4\left(-625\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 5 ni b va -625 ni c bilan almashtiring.
y=\frac{-5±\sqrt{25-4\left(-625\right)}}{2}
5 kvadratini chiqarish.
y=\frac{-5±\sqrt{25+2500}}{2}
-4 ni -625 marotabaga ko'paytirish.
y=\frac{-5±\sqrt{2525}}{2}
25 ni 2500 ga qo'shish.
y=\frac{-5±5\sqrt{101}}{2}
2525 ning kvadrat ildizini chiqarish.
y=\frac{5\sqrt{101}-5}{2}
y=\frac{-5±5\sqrt{101}}{2} tenglamasini yeching, bunda ± musbat. -5 ni 5\sqrt{101} ga qo'shish.
y=\frac{-5\sqrt{101}-5}{2}
y=\frac{-5±5\sqrt{101}}{2} tenglamasini yeching, bunda ± manfiy. -5 dan 5\sqrt{101} ni ayirish.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Tenglama yechildi.
y^{2}+5y=625
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
y^{2}+5y+\left(\frac{5}{2}\right)^{2}=625+\left(\frac{5}{2}\right)^{2}
5 ni bo‘lish, x shartining koeffitsienti, 2 ga \frac{5}{2} olish uchun. Keyin, \frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+5y+\frac{25}{4}=625+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib \frac{5}{2} kvadratini chiqarish.
y^{2}+5y+\frac{25}{4}=\frac{2525}{4}
625 ni \frac{25}{4} ga qo'shish.
\left(y+\frac{5}{2}\right)^{2}=\frac{2525}{4}
y^{2}+5y+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+\frac{5}{2}\right)^{2}}=\sqrt{\frac{2525}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+\frac{5}{2}=\frac{5\sqrt{101}}{2} y+\frac{5}{2}=-\frac{5\sqrt{101}}{2}
Qisqartirish.
y=\frac{5\sqrt{101}-5}{2} y=\frac{-5\sqrt{101}-5}{2}
Tenglamaning ikkala tarafidan \frac{5}{2} ni ayirish.