y uchun yechish
y=4\sqrt{3}-6\approx 0,92820323
y=-4\sqrt{3}-6\approx -12,92820323
Grafik
Baham ko'rish
Klipbordga nusxa olish
y^{2}+12y-12=0
12y ni olish uchun 4y va 8y ni birlashtirish.
y=\frac{-12±\sqrt{12^{2}-4\left(-12\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va -12 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\left(-12\right)}}{2}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144+48}}{2}
-4 ni -12 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{192}}{2}
144 ni 48 ga qo'shish.
y=\frac{-12±8\sqrt{3}}{2}
192 ning kvadrat ildizini chiqarish.
y=\frac{8\sqrt{3}-12}{2}
y=\frac{-12±8\sqrt{3}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 8\sqrt{3} ga qo'shish.
y=4\sqrt{3}-6
-12+8\sqrt{3} ni 2 ga bo'lish.
y=\frac{-8\sqrt{3}-12}{2}
y=\frac{-12±8\sqrt{3}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 8\sqrt{3} ni ayirish.
y=-4\sqrt{3}-6
-12-8\sqrt{3} ni 2 ga bo'lish.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
Tenglama yechildi.
y^{2}+12y-12=0
12y ni olish uchun 4y va 8y ni birlashtirish.
y^{2}+12y=12
12 ni ikki tarafga qo’shing. Har qanday songa nolni qo‘shsangiz, o‘zi chiqadi.
y^{2}+12y+6^{2}=12+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+12y+36=12+36
6 kvadratini chiqarish.
y^{2}+12y+36=48
12 ni 36 ga qo'shish.
\left(y+6\right)^{2}=48
y^{2}+12y+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+6\right)^{2}}=\sqrt{48}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+6=4\sqrt{3} y+6=-4\sqrt{3}
Qisqartirish.
y=4\sqrt{3}-6 y=-4\sqrt{3}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}