Asosiy tarkibga oʻtish
Omil
Tick mark Image
Baholash
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+17y+5=0
Kvadrat koʻp tenglama bu orqali hisoblanadi: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), bu yerda x_{1} va x_{2} ax^{2}+bx+c=0 kvadrat tenglamaning yechimlari.
y=\frac{-17±\sqrt{17^{2}-4\times 5}}{2}
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-17±\sqrt{289-4\times 5}}{2}
17 kvadratini chiqarish.
y=\frac{-17±\sqrt{289-20}}{2}
-4 ni 5 marotabaga ko'paytirish.
y=\frac{-17±\sqrt{269}}{2}
289 ni -20 ga qo'shish.
y=\frac{\sqrt{269}-17}{2}
y=\frac{-17±\sqrt{269}}{2} tenglamasini yeching, bunda ± musbat. -17 ni \sqrt{269} ga qo'shish.
y=\frac{-\sqrt{269}-17}{2}
y=\frac{-17±\sqrt{269}}{2} tenglamasini yeching, bunda ± manfiy. -17 dan \sqrt{269} ni ayirish.
y^{2}+17y+5=\left(y-\frac{\sqrt{269}-17}{2}\right)\left(y-\frac{-\sqrt{269}-17}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) formulasi yordamida amalni hisoblang. x_{1} uchun \frac{-17+\sqrt{269}}{2} ga va x_{2} uchun \frac{-17-\sqrt{269}}{2} ga bo‘ling.