x uchun yechish
x=\frac{y^{2}+16y+4}{4}
y uchun yechish (complex solution)
y=2\sqrt{x+15}-8
y=-2\sqrt{x+15}-8
y uchun yechish
y=2\sqrt{x+15}-8
y=-2\sqrt{x+15}-8\text{, }x\geq -15
Grafik
Baham ko'rish
Klipbordga nusxa olish
16y-4x+4=-y^{2}
Ikkala tarafdan y^{2} ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-4x+4=-y^{2}-16y
Ikkala tarafdan 16y ni ayirish.
-4x=-y^{2}-16y-4
Ikkala tarafdan 4 ni ayirish.
\frac{-4x}{-4}=\frac{-y^{2}-16y-4}{-4}
Ikki tarafini -4 ga bo‘ling.
x=\frac{-y^{2}-16y-4}{-4}
-4 ga bo'lish -4 ga ko'paytirishni bekor qiladi.
x=\frac{y^{2}}{4}+4y+1
-y^{2}-16y-4 ni -4 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}