Asosiy tarkibga oʻtish
y uchun yechish (complex solution)
Tick mark Image
y uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 10 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{104}}{2}
144 ni -40 ga qo'shish.
y=\frac{-12±2\sqrt{26}}{2}
104 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{26} ga qo'shish.
y=\sqrt{26}-6
-12+2\sqrt{26} ni 2 ga bo'lish.
y=\frac{-2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{26} ni ayirish.
y=-\sqrt{26}-6
-12-2\sqrt{26} ni 2 ga bo'lish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglama yechildi.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}+12y+6^{2}=-10+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+12y+36=-10+36
6 kvadratini chiqarish.
y^{2}+12y+36=26
-10 ni 36 ga qo'shish.
\left(y+6\right)^{2}=26
y^{2}+12y+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+6=\sqrt{26} y+6=-\sqrt{26}
Qisqartirish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 10 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{104}}{2}
144 ni -40 ga qo'shish.
y=\frac{-12±2\sqrt{26}}{2}
104 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{26} ga qo'shish.
y=\sqrt{26}-6
-12+2\sqrt{26} ni 2 ga bo'lish.
y=\frac{-2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{26} ni ayirish.
y=-\sqrt{26}-6
-12-2\sqrt{26} ni 2 ga bo'lish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglama yechildi.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}+12y+6^{2}=-10+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+12y+36=-10+36
6 kvadratini chiqarish.
y^{2}+12y+36=26
-10 ni 36 ga qo'shish.
\left(y+6\right)^{2}=26
y^{2}+12y+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+6=\sqrt{26} y+6=-\sqrt{26}
Qisqartirish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.