y uchun yechish (complex solution)
y=\sqrt{26}-6\approx -0,900980486
y=-\left(\sqrt{26}+6\right)\approx -11,099019514
y uchun yechish
y=\sqrt{26}-6\approx -0,900980486
y=-\sqrt{26}-6\approx -11,099019514
Grafik
Baham ko'rish
Klipbordga nusxa olish
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 10 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{104}}{2}
144 ni -40 ga qo'shish.
y=\frac{-12±2\sqrt{26}}{2}
104 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{26} ga qo'shish.
y=\sqrt{26}-6
-12+2\sqrt{26} ni 2 ga bo'lish.
y=\frac{-2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{26} ni ayirish.
y=-\sqrt{26}-6
-12-2\sqrt{26} ni 2 ga bo'lish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglama yechildi.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}+12y+6^{2}=-10+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+12y+36=-10+36
6 kvadratini chiqarish.
y^{2}+12y+36=26
-10 ni 36 ga qo'shish.
\left(y+6\right)^{2}=26
y^{2}+12y+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+6=\sqrt{26} y+6=-\sqrt{26}
Qisqartirish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y+10=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
y=\frac{-12±\sqrt{12^{2}-4\times 10}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, 12 ni b va 10 ni c bilan almashtiring.
y=\frac{-12±\sqrt{144-4\times 10}}{2}
12 kvadratini chiqarish.
y=\frac{-12±\sqrt{144-40}}{2}
-4 ni 10 marotabaga ko'paytirish.
y=\frac{-12±\sqrt{104}}{2}
144 ni -40 ga qo'shish.
y=\frac{-12±2\sqrt{26}}{2}
104 ning kvadrat ildizini chiqarish.
y=\frac{2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± musbat. -12 ni 2\sqrt{26} ga qo'shish.
y=\sqrt{26}-6
-12+2\sqrt{26} ni 2 ga bo'lish.
y=\frac{-2\sqrt{26}-12}{2}
y=\frac{-12±2\sqrt{26}}{2} tenglamasini yeching, bunda ± manfiy. -12 dan 2\sqrt{26} ni ayirish.
y=-\sqrt{26}-6
-12-2\sqrt{26} ni 2 ga bo'lish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglama yechildi.
y^{2}+10+12y=0
12y ni ikki tarafga qo’shing.
y^{2}+12y=-10
Ikkala tarafdan 10 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
y^{2}+12y+6^{2}=-10+6^{2}
12 ni bo‘lish, x shartining koeffitsienti, 2 ga 6 olish uchun. Keyin, 6 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
y^{2}+12y+36=-10+36
6 kvadratini chiqarish.
y^{2}+12y+36=26
-10 ni 36 ga qo'shish.
\left(y+6\right)^{2}=26
y^{2}+12y+36 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(y+6\right)^{2}}=\sqrt{26}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
y+6=\sqrt{26} y+6=-\sqrt{26}
Qisqartirish.
y=\sqrt{26}-6 y=-\sqrt{26}-6
Tenglamaning ikkala tarafidan 6 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}