Asosiy tarkibga oʻtish
c uchun yechish
Tick mark Image
x uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}x}(y)=cx^{2}e^{-3x}+2xe^{-3x}+2e^{-3x}
cx^{2}+2x+2 ga e^{-3x} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
cx^{2}e^{-3x}+2xe^{-3x}+2e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
cx^{2}e^{-3x}+2e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)-2xe^{-3x}
Ikkala tarafdan 2xe^{-3x} ni ayirish.
cx^{2}e^{-3x}=\frac{\mathrm{d}}{\mathrm{d}x}(y)-2xe^{-3x}-2e^{-3x}
Ikkala tarafdan 2e^{-3x} ni ayirish.
\frac{x^{2}}{e^{3x}}c=\frac{-2x-2}{e^{3x}}
Tenglama standart shaklda.
\frac{\frac{x^{2}}{e^{3x}}ce^{3x}}{x^{2}}=\frac{\left(-\frac{2\left(x+1\right)}{e^{3x}}\right)e^{3x}}{x^{2}}
Ikki tarafini x^{2}e^{-3x} ga bo‘ling.
c=\frac{\left(-\frac{2\left(x+1\right)}{e^{3x}}\right)e^{3x}}{x^{2}}
x^{2}e^{-3x} ga bo'lish x^{2}e^{-3x} ga ko'paytirishni bekor qiladi.
c=-\frac{2\left(x+1\right)}{x^{2}}
-\frac{2\left(1+x\right)}{e^{3x}} ni x^{2}e^{-3x} ga bo'lish.