y, x uchun yechish
x=1
y=1
Grafik
Baham ko'rish
Klipbordga nusxa olish
y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y-x=0,3y+7x=10
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
y-x=0
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
y=x
x ni tenglamaning ikkala tarafiga qo'shish.
3x+7x=10
x ni y uchun boshqa tenglamada almashtirish, 3y+7x=10.
10x=10
3x ni 7x ga qo'shish.
x=1
Ikki tarafini 10 ga bo‘ling.
y=1
1 ni x uchun y=x da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=1,x=1
Tizim hal qilindi.
y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y-x=0,3y+7x=10
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-1\\3&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\10\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}1&-1\\3&7\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
\left(\begin{matrix}1&-1\\3&7\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\3&7\end{matrix}\right))\left(\begin{matrix}0\\10\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-3\right)}&-\frac{-1}{7-\left(-3\right)}\\-\frac{3}{7-\left(-3\right)}&\frac{1}{7-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{10}&\frac{1}{10}\\-\frac{3}{10}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}0\\10\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 10\\\frac{1}{10}\times 10\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=1,x=1
y va x matritsa elementlarini chiqarib olish.
y-x=0
Birinchi tenglamani yeching. Ikkala tarafdan x ni ayirish.
y-x=0,3y+7x=10
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
3y+3\left(-1\right)x=0,3y+7x=10
y va 3y ni teng qilish uchun birinchi tenglamaning har bir tarafida barcha shartlarni 3 ga va ikkinchining har bir tarafidagi barcha shartlarni 1 ga ko'paytiring.
3y-3x=0,3y+7x=10
Qisqartirish.
3y-3y-3x-7x=-10
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 3y-3x=0 dan 3y+7x=10 ni ayirish.
-3x-7x=-10
3y ni -3y ga qo'shish. 3y va -3y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-10x=-10
-3x ni -7x ga qo'shish.
x=1
Ikki tarafini -10 ga bo‘ling.
3y+7=10
1 ni x uchun 3y+7x=10 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
3y=3
Tenglamaning ikkala tarafidan 7 ni ayirish.
y=1
Ikki tarafini 3 ga bo‘ling.
y=1,x=1
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}