x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{y+n-1}{n}\text{, }&n\neq 0\\x\in \mathrm{C}\text{, }&y=1\text{ and }n=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{y+n-1}{n}\text{, }&n\neq 0\\x\in \mathrm{R}\text{, }&y=1\text{ and }n=0\end{matrix}\right,
n uchun yechish (complex solution)
\left\{\begin{matrix}n=-\frac{1-y}{x-1}\text{, }&x\neq 1\\n\in \mathrm{C}\text{, }&y=1\text{ and }x=1\end{matrix}\right,
n uchun yechish
\left\{\begin{matrix}n=-\frac{1-y}{x-1}\text{, }&x\neq 1\\n\in \mathrm{R}\text{, }&y=1\text{ and }x=1\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
n\times 1^{n-1}x+1-n\times 1^{n-1}=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
n\times 1^{n-1}x+1=y+n\times 1^{n-1}
n\times 1^{n-1} ni ikki tarafga qo’shing.
n\times 1^{n-1}x=y+n\times 1^{n-1}-1
Ikkala tarafdan 1 ni ayirish.
nx=y+n-1
Tenglama standart shaklda.
\frac{nx}{n}=\frac{y+n-1}{n}
Ikki tarafini n ga bo‘ling.
x=\frac{y+n-1}{n}
n ga bo'lish n ga ko'paytirishni bekor qiladi.
n\times 1^{n-1}x+1-n\times 1^{n-1}=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
n\times 1^{n-1}x+1=y+n\times 1^{n-1}
n\times 1^{n-1} ni ikki tarafga qo’shing.
n\times 1^{n-1}x=y+n\times 1^{n-1}-1
Ikkala tarafdan 1 ni ayirish.
nx=y+n-1
Tenglama standart shaklda.
\frac{nx}{n}=\frac{y+n-1}{n}
Ikki tarafini n ga bo‘ling.
x=\frac{y+n-1}{n}
n ga bo'lish n ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}