m uchun yechish (complex solution)
\left\{\begin{matrix}m=\frac{y}{\left(x-3\right)^{2}}\text{, }&x\neq 3\\m\in \mathrm{C}\text{, }&y=0\text{ and }x=3\end{matrix}\right,
m uchun yechish
\left\{\begin{matrix}m=\frac{y}{\left(x-3\right)^{2}}\text{, }&x\neq 3\\m\in \mathrm{R}\text{, }&y=0\text{ and }x=3\end{matrix}\right,
x uchun yechish (complex solution)
\left\{\begin{matrix}x=3+m^{-\frac{1}{2}}\sqrt{y}\text{; }x=3-m^{-\frac{1}{2}}\sqrt{y}\text{, }&m\neq 0\\x\in \mathrm{C}\text{, }&y=0\text{ and }m=0\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=-\sqrt{\frac{y}{m}}+3\text{; }x=\sqrt{\frac{y}{m}}+3\text{, }&y\leq 0\text{ and }m<0\\x=-\sqrt{\frac{y}{m}}+3\text{; }x=\sqrt{\frac{y}{m}}+3\text{, }&y\geq 0\text{ and }m>0\\x\in \mathrm{R}\text{, }&y=0\text{ and }m=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=m\left(x^{2}-6x+9\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
y=mx^{2}-6mx+9m
m ga x^{2}-6x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mx^{2}-6mx+9m=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(x^{2}-6x+9\right)m=y
m'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(x^{2}-6x+9\right)m}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Ikki tarafini x^{2}-6x+9 ga bo‘ling.
m=\frac{y}{x^{2}-6x+9}
x^{2}-6x+9 ga bo'lish x^{2}-6x+9 ga ko'paytirishni bekor qiladi.
m=\frac{y}{\left(x-3\right)^{2}}
y ni x^{2}-6x+9 ga bo'lish.
y=m\left(x^{2}-6x+9\right)
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-3\right)^{2} kengaytirilishi uchun ishlating.
y=mx^{2}-6mx+9m
m ga x^{2}-6x+9 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
mx^{2}-6mx+9m=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(x^{2}-6x+9\right)m=y
m'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{\left(x^{2}-6x+9\right)m}{x^{2}-6x+9}=\frac{y}{x^{2}-6x+9}
Ikki tarafini x^{2}-6x+9 ga bo‘ling.
m=\frac{y}{x^{2}-6x+9}
x^{2}-6x+9 ga bo'lish x^{2}-6x+9 ga ko'paytirishni bekor qiladi.
m=\frac{y}{\left(x-3\right)^{2}}
y ni x^{2}-6x+9 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}