a uchun yechish (complex solution)
\left\{\begin{matrix}a=-\frac{bx-y+c}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{C}\text{, }&y=c\text{ and }x=0\end{matrix}\right,
b uchun yechish (complex solution)
\left\{\begin{matrix}b=-\frac{ax^{2}-y+c}{x}\text{, }&x\neq 0\\b\in \mathrm{C}\text{, }&y=c\text{ and }x=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=-\frac{bx-y+c}{x^{2}}\text{, }&x\neq 0\\a\in \mathrm{R}\text{, }&y=c\text{ and }x=0\end{matrix}\right,
b uchun yechish
\left\{\begin{matrix}b=-\frac{ax^{2}-y+c}{x}\text{, }&x\neq 0\\b\in \mathrm{R}\text{, }&y=c\text{ and }x=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
ax^{2}+bx+c=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
ax^{2}+c=y-bx
Ikkala tarafdan bx ni ayirish.
ax^{2}=y-bx-c
Ikkala tarafdan c ni ayirish.
x^{2}a=-bx+y-c
Tenglama standart shaklda.
\frac{x^{2}a}{x^{2}}=\frac{-bx+y-c}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
a=\frac{-bx+y-c}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
ax^{2}+bx+c=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
bx+c=y-ax^{2}
Ikkala tarafdan ax^{2} ni ayirish.
bx=y-ax^{2}-c
Ikkala tarafdan c ni ayirish.
bx=-ax^{2}+y-c
Shartlarni qayta saralash.
xb=-ax^{2}+y-c
Tenglama standart shaklda.
\frac{xb}{x}=\frac{-ax^{2}+y-c}{x}
Ikki tarafini x ga bo‘ling.
b=\frac{-ax^{2}+y-c}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
ax^{2}+bx+c=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
ax^{2}+c=y-bx
Ikkala tarafdan bx ni ayirish.
ax^{2}=y-bx-c
Ikkala tarafdan c ni ayirish.
x^{2}a=-bx+y-c
Tenglama standart shaklda.
\frac{x^{2}a}{x^{2}}=\frac{-bx+y-c}{x^{2}}
Ikki tarafini x^{2} ga bo‘ling.
a=\frac{-bx+y-c}{x^{2}}
x^{2} ga bo'lish x^{2} ga ko'paytirishni bekor qiladi.
ax^{2}+bx+c=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
bx+c=y-ax^{2}
Ikkala tarafdan ax^{2} ni ayirish.
bx=y-ax^{2}-c
Ikkala tarafdan c ni ayirish.
bx=-ax^{2}+y-c
Shartlarni qayta saralash.
xb=-ax^{2}+y-c
Tenglama standart shaklda.
\frac{xb}{x}=\frac{-ax^{2}+y-c}{x}
Ikki tarafini x ga bo‘ling.
b=\frac{-ax^{2}+y-c}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}