A uchun yechish (complex solution)
\left\{\begin{matrix}A=-\frac{B-y}{\cos(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\\A\in \mathrm{C}\text{, }&y=B\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\end{matrix}\right,
A uchun yechish
\left\{\begin{matrix}A=-\frac{B-y}{\cos(x)}\text{, }&\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\\A\in \mathrm{R}\text{, }&y=B\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{\pi }{2}\end{matrix}\right,
B uchun yechish
B=-A\cos(x)+y
Grafik
Baham ko'rish
Klipbordga nusxa olish
A\cos(x)+B=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
A\cos(x)=y-B
Ikkala tarafdan B ni ayirish.
\cos(x)A=y-B
Tenglama standart shaklda.
\frac{\cos(x)A}{\cos(x)}=\frac{y-B}{\cos(x)}
Ikki tarafini \cos(x) ga bo‘ling.
A=\frac{y-B}{\cos(x)}
\cos(x) ga bo'lish \cos(x) ga ko'paytirishni bekor qiladi.
A\cos(x)+B=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
A\cos(x)=y-B
Ikkala tarafdan B ni ayirish.
\cos(x)A=y-B
Tenglama standart shaklda.
\frac{\cos(x)A}{\cos(x)}=\frac{y-B}{\cos(x)}
Ikki tarafini \cos(x) ga bo‘ling.
A=\frac{y-B}{\cos(x)}
\cos(x) ga bo'lish \cos(x) ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}