y uchun yechish
y=-\frac{\left(x-8\right)\left(x^{2}+4\right)}{8}
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=8-x+\left(\frac{1}{2}x-2\right)\left(2x-\frac{1}{4}x^{2}+1\right)-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
\frac{1}{2} ga x-4 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y=8-x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{7}{2}x-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
\frac{1}{2}x-2 ga 2x-\frac{1}{4}x^{2}+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
y=8-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
-\frac{9}{2}x ni olish uchun -x va -\frac{7}{2}x ni birlashtirish.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(2-2x+\frac{1}{4}x^{2}-1\right)
6 olish uchun 8 dan 2 ni ayirish.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2\left(1-2x+\frac{1}{4}x^{2}\right)
1 olish uchun 2 dan 1 ni ayirish.
y=6-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-2+4x-\frac{1}{2}x^{2}
-2 ga 1-2x+\frac{1}{4}x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
y=4-\frac{9}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}+4x-\frac{1}{2}x^{2}
4 olish uchun 6 dan 2 ni ayirish.
y=4-\frac{1}{2}x+\frac{3}{2}x^{2}-\frac{1}{8}x^{3}-\frac{1}{2}x^{2}
-\frac{1}{2}x ni olish uchun -\frac{9}{2}x va 4x ni birlashtirish.
y=4-\frac{1}{2}x+x^{2}-\frac{1}{8}x^{3}
x^{2} ni olish uchun \frac{3}{2}x^{2} va -\frac{1}{2}x^{2} ni birlashtirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}