y, x uchun yechish
x=5
y=32
Grafik
Baham ko'rish
Klipbordga nusxa olish
y-5x=7
Birinchi tenglamani yeching. Ikkala tarafdan 5x ni ayirish.
y-8x=-8
Ikkinchi tenglamani yeching. Ikkala tarafdan 8x ni ayirish.
y-5x=7,y-8x=-8
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
y-5x=7
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
y=5x+7
5x ni tenglamaning ikkala tarafiga qo'shish.
5x+7-8x=-8
5x+7 ni y uchun boshqa tenglamada almashtirish, y-8x=-8.
-3x+7=-8
5x ni -8x ga qo'shish.
-3x=-15
Tenglamaning ikkala tarafidan 7 ni ayirish.
x=5
Ikki tarafini -3 ga bo‘ling.
y=5\times 5+7
5 ni x uchun y=5x+7 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=25+7
5 ni 5 marotabaga ko'paytirish.
y=32
7 ni 25 ga qo'shish.
y=32,x=5
Tizim hal qilindi.
y-5x=7
Birinchi tenglamani yeching. Ikkala tarafdan 5x ni ayirish.
y-8x=-8
Ikkinchi tenglamani yeching. Ikkala tarafdan 8x ni ayirish.
y-5x=7,y-8x=-8
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\-8\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right))\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right))\left(\begin{matrix}7\\-8\end{matrix}\right)
\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right))\left(\begin{matrix}7\\-8\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-5\\1&-8\end{matrix}\right))\left(\begin{matrix}7\\-8\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-5\right)}&-\frac{-5}{-8-\left(-5\right)}\\-\frac{1}{-8-\left(-5\right)}&\frac{1}{-8-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}7\\-8\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}&-\frac{5}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\-8\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\times 7-\frac{5}{3}\left(-8\right)\\\frac{1}{3}\times 7-\frac{1}{3}\left(-8\right)\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}32\\5\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=32,x=5
y va x matritsa elementlarini chiqarib olish.
y-5x=7
Birinchi tenglamani yeching. Ikkala tarafdan 5x ni ayirish.
y-8x=-8
Ikkinchi tenglamani yeching. Ikkala tarafdan 8x ni ayirish.
y-5x=7,y-8x=-8
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
y-y-5x+8x=7+8
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali y-5x=7 dan y-8x=-8 ni ayirish.
-5x+8x=7+8
y ni -y ga qo'shish. y va -y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
3x=7+8
-5x ni 8x ga qo'shish.
3x=15
7 ni 8 ga qo'shish.
x=5
Ikki tarafini 3 ga bo‘ling.
y-8\times 5=-8
5 ni x uchun y-8x=-8 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y-40=-8
-8 ni 5 marotabaga ko'paytirish.
y=32
40 ni tenglamaning ikkala tarafiga qo'shish.
y=32,x=5
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}