x uchun yechish
x=-\frac{\sqrt{3}y}{6}+\frac{y}{2}
y uchun yechish
y=\sqrt{3}x+3x
Grafik
Baham ko'rish
Klipbordga nusxa olish
3x+\sqrt{3}x=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(3+\sqrt{3}\right)x=y
x'ga ega bo'lgan barcha shartlarni birlashtirish.
\left(\sqrt{3}+3\right)x=y
Tenglama standart shaklda.
\frac{\left(\sqrt{3}+3\right)x}{\sqrt{3}+3}=\frac{y}{\sqrt{3}+3}
Ikki tarafini 3+\sqrt{3} ga bo‘ling.
x=\frac{y}{\sqrt{3}+3}
3+\sqrt{3} ga bo'lish 3+\sqrt{3} ga ko'paytirishni bekor qiladi.
x=-\frac{\sqrt{3}y}{6}+\frac{y}{2}
y ni 3+\sqrt{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}