Asosiy tarkibga oʻtish
y, x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

y-2x=-1
Birinchi tenglamani yeching. Ikkala tarafdan 2x ni ayirish.
y-2x=-1,y+2x=3
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
y-2x=-1
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi y ni izolyatsiyalash orqali y ni hisoblang.
y=2x-1
2x ni tenglamaning ikkala tarafiga qo'shish.
2x-1+2x=3
2x-1 ni y uchun boshqa tenglamada almashtirish, y+2x=3.
4x-1=3
2x ni 2x ga qo'shish.
4x=4
1 ni tenglamaning ikkala tarafiga qo'shish.
x=1
Ikki tarafini 4 ga bo‘ling.
y=2-1
1 ni x uchun y=2x-1 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=1
-1 ni 2 ga qo'shish.
y=1,x=1
Tizim hal qilindi.
y-2x=-1
Birinchi tenglamani yeching. Ikkala tarafdan 2x ni ayirish.
y-2x=-1,y+2x=3
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}1&-2\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}1&-2\\1&2\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&2\end{matrix}\right))\left(\begin{matrix}-1\\3\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-2}{2-\left(-2\right)}\\-\frac{1}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-1\\3\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-1\right)+\frac{1}{2}\times 3\\-\frac{1}{4}\left(-1\right)+\frac{1}{4}\times 3\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
y=1,x=1
y va x matritsa elementlarini chiqarib olish.
y-2x=-1
Birinchi tenglamani yeching. Ikkala tarafdan 2x ni ayirish.
y-2x=-1,y+2x=3
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
y-y-2x-2x=-1-3
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali y-2x=-1 dan y+2x=3 ni ayirish.
-2x-2x=-1-3
y ni -y ga qo'shish. y va -y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
-4x=-1-3
-2x ni -2x ga qo'shish.
-4x=-4
-1 ni -3 ga qo'shish.
x=1
Ikki tarafini -4 ga bo‘ling.
y+2=3
1 ni x uchun y+2x=3 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=1
Tenglamaning ikkala tarafidan 2 ni ayirish.
y=1,x=1
Tizim hal qilindi.