f uchun yechish (complex solution)
\left\{\begin{matrix}f=\frac{2\left(2-y\right)}{x+1}\text{, }&x\neq -1\\f\in \mathrm{C}\text{, }&y=2\text{ and }x=-1\end{matrix}\right,
x uchun yechish (complex solution)
\left\{\begin{matrix}x=\frac{4-f-2y}{f}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&y=2\text{ and }f=0\end{matrix}\right,
f uchun yechish
\left\{\begin{matrix}f=\frac{2\left(2-y\right)}{x+1}\text{, }&x\neq -1\\f\in \mathrm{R}\text{, }&y=2\text{ and }x=-1\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}x=\frac{4-f-2y}{f}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&y=2\text{ and }f=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
f'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{-x-1}{2}f=y-2
Tenglama standart shaklda.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Ikki tarafini -\frac{1}{2}x-\frac{1}{2} ga bo‘ling.
f=\frac{2\left(y-2\right)}{-x-1}
-\frac{1}{2}x-\frac{1}{2} ga bo'lish -\frac{1}{2}x-\frac{1}{2} ga ko'paytirishni bekor qiladi.
f=-\frac{2\left(y-2\right)}{x+1}
y-2 ni -\frac{1}{2}x-\frac{1}{2} ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
\frac{1}{2}f ni ikki tarafga qo’shing.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
Tenglama standart shaklda.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Ikki tarafini -\frac{1}{2}f ga bo‘ling.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
-\frac{1}{2}f ga bo'lish -\frac{1}{2}f ga ko'paytirishni bekor qiladi.
x=-\frac{2y+f-4}{f}
y-2+\frac{f}{2} ni -\frac{1}{2}f ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
f'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{-x-1}{2}f=y-2
Tenglama standart shaklda.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Ikki tarafini -\frac{1}{2}x-\frac{1}{2} ga bo‘ling.
f=\frac{2\left(y-2\right)}{-x-1}
-\frac{1}{2}x-\frac{1}{2} ga bo'lish -\frac{1}{2}x-\frac{1}{2} ga ko'paytirishni bekor qiladi.
f=-\frac{2\left(y-2\right)}{x+1}
y-2 ni -\frac{1}{2}x-\frac{1}{2} ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
\frac{1}{2}f ni ikki tarafga qo’shing.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
Tenglama standart shaklda.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Ikki tarafini -\frac{1}{2}f ga bo‘ling.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
-\frac{1}{2}f ga bo'lish -\frac{1}{2}f ga ko'paytirishni bekor qiladi.
x=-\frac{2y+f-4}{f}
y-2+\frac{f}{2} ni -\frac{1}{2}f ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}