Asosiy tarkibga oʻtish
f uchun yechish (complex solution)
Tick mark Image
x uchun yechish (complex solution)
Tick mark Image
f uchun yechish
Tick mark Image
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
f'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{-x-1}{2}f=y-2
Tenglama standart shaklda.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Ikki tarafini -\frac{1}{2}x-\frac{1}{2} ga bo‘ling.
f=\frac{2\left(y-2\right)}{-x-1}
-\frac{1}{2}x-\frac{1}{2} ga bo'lish -\frac{1}{2}x-\frac{1}{2} ga ko'paytirishni bekor qiladi.
f=-\frac{2\left(y-2\right)}{x+1}
y-2 ni -\frac{1}{2}x-\frac{1}{2} ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
\frac{1}{2}f ni ikki tarafga qo’shing.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
Tenglama standart shaklda.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Ikki tarafini -\frac{1}{2}f ga bo‘ling.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
-\frac{1}{2}f ga bo'lish -\frac{1}{2}f ga ko'paytirishni bekor qiladi.
x=-\frac{2y+f-4}{f}
y-2+\frac{f}{2} ni -\frac{1}{2}f ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
\left(-\frac{1}{2}x-\frac{1}{2}\right)f=y-2
f'ga ega bo'lgan barcha shartlarni birlashtirish.
\frac{-x-1}{2}f=y-2
Tenglama standart shaklda.
\frac{2\times \frac{-x-1}{2}f}{-x-1}=\frac{2\left(y-2\right)}{-x-1}
Ikki tarafini -\frac{1}{2}x-\frac{1}{2} ga bo‘ling.
f=\frac{2\left(y-2\right)}{-x-1}
-\frac{1}{2}x-\frac{1}{2} ga bo'lish -\frac{1}{2}x-\frac{1}{2} ga ko'paytirishni bekor qiladi.
f=-\frac{2\left(y-2\right)}{x+1}
y-2 ni -\frac{1}{2}x-\frac{1}{2} ga bo'lish.
2-\frac{1}{2}f\left(x+1\right)=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
2-\frac{1}{2}fx-\frac{1}{2}f=y
-\frac{1}{2}f ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
-\frac{1}{2}fx-\frac{1}{2}f=y-2
Ikkala tarafdan 2 ni ayirish.
-\frac{1}{2}fx=y-2+\frac{1}{2}f
\frac{1}{2}f ni ikki tarafga qo’shing.
\left(-\frac{f}{2}\right)x=\frac{f}{2}+y-2
Tenglama standart shaklda.
\frac{\left(-\frac{f}{2}\right)x}{-\frac{f}{2}}=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
Ikki tarafini -\frac{1}{2}f ga bo‘ling.
x=\frac{\frac{f}{2}+y-2}{-\frac{f}{2}}
-\frac{1}{2}f ga bo'lish -\frac{1}{2}f ga ko'paytirishni bekor qiladi.
x=-\frac{2y+f-4}{f}
y-2+\frac{f}{2} ni -\frac{1}{2}f ga bo'lish.