a uchun yechish (complex solution)
\left\{\begin{matrix}a=2b-2y-\frac{y}{b}\text{, }&b\neq 0\\a\in \mathrm{C}\text{, }&b=0\text{ and }y=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=2b-2y-\frac{y}{b}\text{, }&b\neq 0\\a\in \mathrm{R}\text{, }&b=0\text{ and }y=0\end{matrix}\right,
b uchun yechish (complex solution)
b=\frac{-\sqrt{4y^{2}+4ay+8y+a^{2}}+a+2y}{4}
b=\frac{\sqrt{4y^{2}+4ay+8y+a^{2}}+a+2y}{4}
b uchun yechish
b=\frac{-\sqrt{4y^{2}+4ay+8y+a^{2}}+a+2y}{4}
b=\frac{\sqrt{4y^{2}+4ay+8y+a^{2}}+a+2y}{4}\text{, }y\geq -\frac{a}{2}+\sqrt{a+1}-1\text{ or }y\leq -\frac{a}{2}-\sqrt{a+1}-1\text{ or }a\leq -1
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(-a\right)b-2by+2b^{2}=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(-a\right)b+2b^{2}=y+2by
2by ni ikki tarafga qo’shing.
\left(-a\right)b=y+2by-2b^{2}
Ikkala tarafdan 2b^{2} ni ayirish.
-ab=2by+y-2b^{2}
Shartlarni qayta saralash.
\left(-b\right)a=2by+y-2b^{2}
Tenglama standart shaklda.
\frac{\left(-b\right)a}{-b}=\frac{2by+y-2b^{2}}{-b}
Ikki tarafini -b ga bo‘ling.
a=\frac{2by+y-2b^{2}}{-b}
-b ga bo'lish -b ga ko'paytirishni bekor qiladi.
a=2b-2y-\frac{y}{b}
2by+y-2b^{2} ni -b ga bo'lish.
\left(-a\right)b-2by+2b^{2}=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\left(-a\right)b+2b^{2}=y+2by
2by ni ikki tarafga qo’shing.
\left(-a\right)b=y+2by-2b^{2}
Ikkala tarafdan 2b^{2} ni ayirish.
-ab=2by+y-2b^{2}
Shartlarni qayta saralash.
\left(-b\right)a=2by+y-2b^{2}
Tenglama standart shaklda.
\frac{\left(-b\right)a}{-b}=\frac{2by+y-2b^{2}}{-b}
Ikki tarafini -b ga bo‘ling.
a=\frac{2by+y-2b^{2}}{-b}
-b ga bo'lish -b ga ko'paytirishni bekor qiladi.
a=2b-2y-\frac{y}{b}
2by+y-2b^{2} ni -b ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}