y = \sqrt { 25 - 16 } + \sqrt[ 16 ] { 0 } - \sqrt[ 3 ] { 27 } ? ( 0
y uchun yechish
y=3
y'ni tayinlash
y≔3
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=\sqrt{9}+\sqrt[16]{0}-\sqrt[3]{27}\times 0
9 olish uchun 25 dan 16 ni ayirish.
y=3+\sqrt[16]{0}-\sqrt[3]{27}\times 0
9 ning kvadrat ildizini hisoblab, 3 natijaga ega bo‘ling.
y=3+0-\sqrt[3]{27}\times 0
\sqrt[16]{0} ni hisoblab, 0 natijasiga ega bo‘ling.
y=3-\sqrt[3]{27}\times 0
3 olish uchun 3 va 0'ni qo'shing.
y=3-3\times 0
\sqrt[3]{27} ni hisoblab, 3 natijasiga ega bo‘ling.
y=3-0
0 hosil qilish uchun 3 va 0 ni ko'paytirish.
y=3
3 olish uchun 3 dan 0 ni ayirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}