p uchun yechish
\left\{\begin{matrix}p=\frac{4+ry+xy-x^{2}}{x}\text{, }&x\neq 0\text{ and }x\neq -r\\p\in \mathrm{R}\text{, }&y=-\frac{4}{r}\text{ and }x=0\text{ and }r\neq 0\end{matrix}\right,
r uchun yechish
\left\{\begin{matrix}r=-\frac{4-px+xy-x^{2}}{y}\text{, }&\left(x=0\text{ or }p\neq -x+\frac{4}{x}\right)\text{ and }y\neq 0\text{ and }x\neq \frac{-\sqrt{p^{2}+16}-p}{2}\text{ and }x\neq \frac{\sqrt{p^{2}+16}-p}{2}\\r\neq -x\text{, }&y=0\text{ and }p=-x+\frac{4}{x}\text{ and }x\neq 0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
y\left(x+r\right)=x^{2}+px-4
Tenglamaning ikkala tarafini x+r ga ko'paytirish.
yx+yr=x^{2}+px-4
y ga x+r ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}+px-4=yx+yr
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
px-4=yx+yr-x^{2}
Ikkala tarafdan x^{2} ni ayirish.
px=yx+yr-x^{2}+4
4 ni ikki tarafga qo’shing.
xp=4+ry+xy-x^{2}
Tenglama standart shaklda.
\frac{xp}{x}=\frac{4+ry+xy-x^{2}}{x}
Ikki tarafini x ga bo‘ling.
p=\frac{4+ry+xy-x^{2}}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
p=\frac{ry+4}{x}+y-x
yx+yr-x^{2}+4 ni x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}