x uchun yechish
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{578}
y\leq \frac{5\pi ^{3}}{17}
x uchun yechish (complex solution)
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{578}
arg(-\frac{y}{2}+\frac{5\pi ^{3}}{34})<\pi \text{ or }y=\frac{5\pi ^{3}}{17}
y uchun yechish (complex solution)
y=-\sqrt{2x}+\frac{5\pi ^{3}}{17}
y uchun yechish
y=-\sqrt{2x}+\frac{5\pi ^{3}}{17}
x\geq 0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\frac{5\pi ^{3}}{17}-\sqrt{2x}=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\sqrt{2x}=y-\frac{5\pi ^{3}}{17}
Ikkala tarafdan \frac{5\pi ^{3}}{17} ni ayirish.
-17\sqrt{2x}=17y-5\pi ^{3}
Tenglamaning ikkala tarafini 17 ga ko'paytirish.
\frac{-17\sqrt{2x}}{-17}=\frac{17y-5\pi ^{3}}{-17}
Ikki tarafini -17 ga bo‘ling.
\sqrt{2x}=\frac{17y-5\pi ^{3}}{-17}
-17 ga bo'lish -17 ga ko'paytirishni bekor qiladi.
\sqrt{2x}=-y+\frac{5\pi ^{3}}{17}
17y-5\pi ^{3} ni -17 ga bo'lish.
2x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{289}
Tenglamaning ikkala taraf kvadratini chiqarish.
\frac{2x}{2}=\frac{\left(5\pi ^{3}-17y\right)^{2}}{2\times 289}
Ikki tarafini 2 ga bo‘ling.
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{2\times 289}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
x=\frac{\left(5\pi ^{3}-17y\right)^{2}}{578}
\frac{\left(-17y+5\pi ^{3}\right)^{2}}{289} ni 2 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}