y uchun yechish (complex solution)
\left\{\begin{matrix}y=0\text{, }&x\neq 0\\y\in \mathrm{C}\text{, }&x=\frac{3}{2}\end{matrix}\right,
x uchun yechish
\left\{\begin{matrix}\\x=\frac{3}{2}=1,5\text{, }&\text{unconditionally}\\x\neq 0\text{, }&y=0\end{matrix}\right,
y uchun yechish
\left\{\begin{matrix}y=0\text{, }&x\neq 0\\y\in \mathrm{R}\text{, }&x=\frac{3}{2}\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=\frac{3y}{2x}
\frac{3}{2x}y ni yagona kasrga aylantiring.
y-\frac{3y}{2x}=0
Ikkala tarafdan \frac{3y}{2x} ni ayirish.
\frac{y\times 2x}{2x}-\frac{3y}{2x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. y ni \frac{2x}{2x} marotabaga ko'paytirish.
\frac{y\times 2x-3y}{2x}=0
\frac{y\times 2x}{2x} va \frac{3y}{2x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
y\times 2x-3y=0
Tenglamaning ikkala tarafini 2x ga ko'paytirish.
\left(2x-3\right)y=0
y'ga ega bo'lgan barcha shartlarni birlashtirish.
y=0
0 ni 2x-3 ga bo'lish.
y\times 2x=3y
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini 2x ga ko'paytirish.
2xy=3y
Shartlarni qayta saralash.
2yx=3y
Tenglama standart shaklda.
\frac{2yx}{2y}=\frac{3y}{2y}
Ikki tarafini 2y ga bo‘ling.
x=\frac{3y}{2y}
2y ga bo'lish 2y ga ko'paytirishni bekor qiladi.
x=\frac{3}{2}
3y ni 2y ga bo'lish.
y=\frac{3y}{2x}
\frac{3}{2x}y ni yagona kasrga aylantiring.
y-\frac{3y}{2x}=0
Ikkala tarafdan \frac{3y}{2x} ni ayirish.
\frac{y\times 2x}{2x}-\frac{3y}{2x}=0
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. y ni \frac{2x}{2x} marotabaga ko'paytirish.
\frac{y\times 2x-3y}{2x}=0
\frac{y\times 2x}{2x} va \frac{3y}{2x} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
y\times 2x-3y=0
Tenglamaning ikkala tarafini 2x ga ko'paytirish.
\left(2x-3\right)y=0
y'ga ega bo'lgan barcha shartlarni birlashtirish.
y=0
0 ni 2x-3 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}