t uchun yechish (complex solution)
\left\{\begin{matrix}t=-\frac{2m-7y}{2w}\text{, }&w\neq 0\\t\in \mathrm{C}\text{, }&y=\frac{2m}{7}\text{ and }w=0\end{matrix}\right,
m uchun yechish
m=-tw+\frac{7y}{2}
t uchun yechish
\left\{\begin{matrix}t=-\frac{2m-7y}{2w}\text{, }&w\neq 0\\t\in \mathrm{R}\text{, }&y=\frac{2m}{7}\text{ and }w=0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=\frac{2}{7}tw+\frac{2}{7}m
\frac{2}{7} ga tw+m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2}{7}tw+\frac{2}{7}m=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{2}{7}tw=y-\frac{2}{7}m
Ikkala tarafdan \frac{2}{7}m ni ayirish.
\frac{2w}{7}t=-\frac{2m}{7}+y
Tenglama standart shaklda.
\frac{7\times \frac{2w}{7}t}{2w}=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Ikki tarafini \frac{2}{7}w ga bo‘ling.
t=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
\frac{2}{7}w ga bo'lish \frac{2}{7}w ga ko'paytirishni bekor qiladi.
t=\frac{7y-2m}{2w}
y-\frac{2m}{7} ni \frac{2}{7}w ga bo'lish.
y=\frac{2}{7}tw+\frac{2}{7}m
\frac{2}{7} ga tw+m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2}{7}tw+\frac{2}{7}m=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{2}{7}m=y-\frac{2}{7}tw
Ikkala tarafdan \frac{2}{7}tw ni ayirish.
\frac{2}{7}m=-\frac{2tw}{7}+y
Tenglama standart shaklda.
\frac{\frac{2}{7}m}{\frac{2}{7}}=\frac{-\frac{2tw}{7}+y}{\frac{2}{7}}
Tenglamaning ikki tarafini \frac{2}{7} ga bo'lish, bu kasrni qaytarish orqali ikkala tarafga ko'paytirish bilan aynidir.
m=\frac{-\frac{2tw}{7}+y}{\frac{2}{7}}
\frac{2}{7} ga bo'lish \frac{2}{7} ga ko'paytirishni bekor qiladi.
m=-tw+\frac{7y}{2}
y-\frac{2tw}{7} ni \frac{2}{7} ga bo'lish y-\frac{2tw}{7} ga k'paytirish \frac{2}{7} ga qaytarish.
y=\frac{2}{7}tw+\frac{2}{7}m
\frac{2}{7} ga tw+m ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{2}{7}tw+\frac{2}{7}m=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\frac{2}{7}tw=y-\frac{2}{7}m
Ikkala tarafdan \frac{2}{7}m ni ayirish.
\frac{2w}{7}t=-\frac{2m}{7}+y
Tenglama standart shaklda.
\frac{7\times \frac{2w}{7}t}{2w}=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
Ikki tarafini \frac{2}{7}w ga bo‘ling.
t=\frac{7\left(-\frac{2m}{7}+y\right)}{2w}
\frac{2}{7}w ga bo'lish \frac{2}{7}w ga ko'paytirishni bekor qiladi.
t=\frac{7y-2m}{2w}
y-\frac{2m}{7} ni \frac{2}{7}w ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}