x uchun yechish
x=4\left(4-y\right)^{2}-2
8-2y\geq 0
x uchun yechish (complex solution)
x=4\left(4-y\right)^{2}-2
y=4\text{ or }arg(8-2y)<\pi
y uchun yechish (complex solution)
y=-\frac{\sqrt{x+2}}{2}+4
y uchun yechish
y=-\frac{\sqrt{x+2}}{2}+4
x\geq -2
Grafik
Baham ko'rish
Klipbordga nusxa olish
y=-\frac{1}{2}\sqrt{x+2}+4
\frac{-1}{2} kasri manfiy belgini olib tashlash bilan -\frac{1}{2} sifatida qayta yozilishi mumkin.
-\frac{1}{2}\sqrt{x+2}+4=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-\frac{1}{2}\sqrt{x+2}=y-4
Ikkala tarafdan 4 ni ayirish.
\frac{-\frac{1}{2}\sqrt{x+2}}{-\frac{1}{2}}=\frac{y-4}{-\frac{1}{2}}
Ikkala tarafini -2 ga ko‘paytiring.
\sqrt{x+2}=\frac{y-4}{-\frac{1}{2}}
-\frac{1}{2} ga bo'lish -\frac{1}{2} ga ko'paytirishni bekor qiladi.
\sqrt{x+2}=8-2y
y-4 ni -\frac{1}{2} ga bo'lish y-4 ga k'paytirish -\frac{1}{2} ga qaytarish.
x+2=4\left(4-y\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
x+2-2=4\left(4-y\right)^{2}-2
Tenglamaning ikkala tarafidan 2 ni ayirish.
x=4\left(4-y\right)^{2}-2
O‘zidan 2 ayirilsa 0 qoladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}