x uchun yechish
x\neq 0
\left(arg(-ix)<\pi \text{ and }x\neq 0\text{ and }y=-i\right)\text{ or }\left(arg(ix)<\pi \text{ and }x\neq 0\text{ and }y=i\right)
y uchun yechish
y=\frac{\sqrt{-x^{2}}}{x}
x\neq 0
Baham ko'rish
Klipbordga nusxa olish
yx=\sqrt{-x^{2}}
x qiymati 0 teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini x ga ko'paytirish.
yx-\sqrt{-x^{2}}=0
Ikkala tarafdan \sqrt{-x^{2}} ni ayirish.
-\sqrt{-x^{2}}=-yx
Tenglamaning ikkala tarafidan yx ni ayirish.
\sqrt{-x^{2}}=yx
-1ni ikki tarafidan bekor qilish.
\left(\sqrt{-x^{2}}\right)^{2}=\left(yx\right)^{2}
Tenglamaning ikkala taraf kvadratini chiqarish.
-x^{2}=\left(yx\right)^{2}
2 daraja ko‘rsatkichini \sqrt{-x^{2}} ga hisoblang va -x^{2} ni qiymatni oling.
-x^{2}=y^{2}x^{2}
\left(yx\right)^{2} ni kengaytirish.
-x^{2}-y^{2}x^{2}=0
Ikkala tarafdan y^{2}x^{2} ni ayirish.
-x^{2}y^{2}-x^{2}=0
Shartlarni qayta saralash.
\left(-y^{2}-1\right)x^{2}=0
x'ga ega bo'lgan barcha shartlarni birlashtirish.
x^{2}=\frac{0}{-y^{2}-1}
-y^{2}-1 ga bo'lish -y^{2}-1 ga ko'paytirishni bekor qiladi.
x^{2}=0
0 ni -y^{2}-1 ga bo'lish.
x=0 x=0
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x=0
Tenglama yechildi. Yechimlar bir xil.
y=\frac{\sqrt{-0^{2}}}{0}
y=\frac{\sqrt{-x^{2}}}{x} tenglamasida x uchun 0 ni almashtiring. Bu ifoda noaniq.
x\in \emptyset
\sqrt{-x^{2}}=xy tenglamasining yechimlari mavjud emas.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}